Feynman checkers: towards algorithmic quantum theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 445-530 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We survey and develop the most elementary model of electron motion introduced by Feynman. In this game, a checker moves on a checkerboard by simple rules, and we count the turns. Feynman checkers are also known as a one-dimensional quantum walk or an Ising model at imaginary temperature. We solve mathematically a Feynman problem from 1965, which was to prove that the discrete model (for large time, small average velocity, and small lattice step) is consistent with the continuum one. We study asymptotic properties of the model (for small lattice step and large time) improving the results due to Narlikar from 1972 and to Sunada and Tate from 2012. For the first time we observe and prove concentration of measure in the small-lattice-step limit. We perform the second quantization of the model. We also present a survey of known results on Feynman checkers. Bibliography: 53 titles.
Keywords: Feynman checkerboard, quantum walk, Ising model, Young diagram, stationary phase method.
Mots-clés : Dirac equation
@article{RM_2022_77_3_a1,
     author = {M. B. Skopenkov and A. V. Ustinov},
     title = {Feynman checkers: towards algorithmic quantum theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {445--530},
     year = {2022},
     volume = {77},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2022_77_3_a1/}
}
TY  - JOUR
AU  - M. B. Skopenkov
AU  - A. V. Ustinov
TI  - Feynman checkers: towards algorithmic quantum theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 445
EP  - 530
VL  - 77
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_2022_77_3_a1/
LA  - en
ID  - RM_2022_77_3_a1
ER  - 
%0 Journal Article
%A M. B. Skopenkov
%A A. V. Ustinov
%T Feynman checkers: towards algorithmic quantum theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 445-530
%V 77
%N 3
%U http://geodesic.mathdoc.fr/item/RM_2022_77_3_a1/
%G en
%F RM_2022_77_3_a1
M. B. Skopenkov; A. V. Ustinov. Feynman checkers: towards algorithmic quantum theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 445-530. http://geodesic.mathdoc.fr/item/RM_2022_77_3_a1/

[1] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, “One-dimensional quantum walks”, Proceedings of the thirty-third annual ACM symposium on theory of computing, ACM, New York, 2001, 37–49 | DOI | MR | Zbl

[2] C. M. Bender, L. R. Mead, and K. A. Milton, “Discrete time quantum mechanics”, Comput. Math. Appl., 28:10-12 (1994), 279–317 | DOI | MR | Zbl

[3] C. M. Bender, K. A. Milton, and D. H. Sharp, “Gauge invariance and the finite-element solution of the Schwinger model”, Phys. Rev. D (3), 31:2 (1985), 383–388 ; “Erratum”, 32:6 (1985), 1593 | DOI | MR | DOI | MR

[4] I. Bialynicki-Birula, “Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata”, Phys. Rev. D (3), 49:12 (1994), 6920–6927 | DOI | MR

[5] P. Billingsley, Probability and measure, Wiley Ser. Probab. Math. Statist., 3rd ed., John Wiley Sons, Inc., New York, 1995, xiv+593 pp. | MR | Zbl

[6] I. Bogdanov, Feynman checkers: the probability of direction reversal, 2020, 8 pp., arXiv: 2010.04583

[7] M. J. Cantero, F. A. Grünbaum, L. Moral, and L. Velázquez, “The CGMV method for quantum walks”, Quantum Inf. Process., 11:5 (2012), 1149–1192 | DOI | MR | Zbl

[8] D. Chelkak and S. Smirnov, “Discrete complex analysis on isoradial graphs”, Adv. Math., 228:3 (2011), 1590–1630 | DOI | MR | Zbl

[9] Li-Chen Chen and M. E. H. Ismail, “On asymptotics of Jacobi polynomials”, SIAM J. Math. Anal., 22:5 (1991), 1442–1449 | DOI | MR | Zbl

[10] M. Dmitriev, Feynman checkers with absorption, 2022, 10 pp., arXiv: (Russian) 2204.07861

[11] R. P. Feynman, QED: The strange theory of light and matter, rev. ed., Princeton Univ. Press, Princeton, NJ, 2006, xxiv+158 pp. | Zbl

[12] R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, International Series in Pure and Applied Physics, McGraw-Hill Book Co., Inc., New York, 1965, 365 pp. | MR | Zbl

[13] S. R. Finch, Mathematical constants, Encyclopedia Math. Appl., 94, Cambridge Univ. Press, Cambridge, 2003, xx+602 pp. | MR | Zbl

[14] G. B. Folland, Quantum field theory. A tourist guide for mathematicians, Math. Surveys Monogr., 149, Amer. Math. Soc., Providence, RI, 2008, xii+325 pp. | DOI | MR | Zbl

[15] B. Z. Foster and T. Jacobson, “Spin on a 4D Feynman checkerboard”, Internat. J. Theoret. Phys., 56:1 (2017), 129–144 | DOI | MR | Zbl

[16] B. Gaveau and L. S. Schulman, “Dirac equation path integral: interpreting the Grassmann variables”, Nuovo Cimento D (1), 11:1-2 (1989), 31–51 | DOI | MR

[17] K. Georgopoulos, C. Emary, and P. Zuliani, “Comparison of quantum-walk implementations on noisy intermediate-scale quantum computers”, Phys. Rev. A, 103:2 (2021), 022408, 10 pp. | DOI | MR

[18] H. A. Gersch, “Feynman's relativistic chessboard as an Ising model”, Internat. J. Theoret. Phys., 20:7 (1981), 491–501 | DOI

[19] I. S. Gradshteyn and I. M. Ryzhik, Tables of integrals, sums, series and products, 4th ed., Fizmatgiz, Moscow, 1963, 1100 pp. ; English transl. 4th ed., Academic Press, New York–London, 1965, xiv+1086 pp. | MR | Zbl | MR | Zbl

[20] G. Grimmett, S. Janson, and P. F. Scudo, “Weak limits for quantum random walks”, Phys. Rev. E, 69:2 (2004), 026119 | DOI

[21] M. N. Huxley, Area, lattice points, and exponential sums, London Math. Soc. Monogr. (N. S.), 13, The Clarendon Press, Oxford Univ. Press, New York, 1996, xii+494 pp. | MR | Zbl

[22] T. Jacobson, “Feynman's checkerboard and other games”, Non-linear equations in classical and quantum field theory (Meudon/Paris, 1983/1984), Lecture Notes in Phys., 226, Springer, Berlin, 1985, 386–395 | DOI | MR | Zbl

[23] T. Jacobson and L. S. Schulman, “Quantum stochastics: the passage from a relativistic to a non-relativistic path integral”, J. Phys. A, 17:2 (1984), 375–383 | DOI | MR

[24] P. Jizba, “Feynman checkerboard picture and neutrino oscillations”, J. Phys. Conf. Ser., 626 (2015), 012048, 11 pp. | DOI

[25] G. L. Jones, “Complex temperatures and phase transitions”, J. Math. Phys., 7:11 (1966), 2000–2005 | DOI

[26] A. A. Karatsuba, Basic analytic number theory, 2nd ed., Nauka, Moscow, 1983, 240 pp. ; English transl. Springer-Verlag, Berlin, 1993, xiv+222 pp. | MR | DOI | MR | Zbl

[27] J. Kempe, “Quantum random walks: an introductory overview”, Contemp. Phys., 50:1 (2009), 339–359 | DOI

[28] R. Kenyon, “The Laplacian and Dirac operators on critical planar graphs”, Invent. Math., 150:2 (2002), 409–439 | DOI | MR | Zbl

[29] N. Konno, “A new type of limit theorems for the one-dimensional quantum random walk”, J. Math. Soc. Japan, 57:4 (2005), 1179–1195 | DOI | MR | Zbl

[30] N. Konno, “Quantum walks”, Quantum potential theory, Lecture Notes in Math., 1954, Springer, Berlin, 2008, 309–452 | DOI | MR | Zbl

[31] N. Konno, “Quantum walks”, Sugaku Expositions, 33:2 (2020), 135–158 | DOI | MR | Zbl

[32] A. B. J. Kuijlaars and A. Martínez-Finkelshtein, “Strong asymptotics for Jacobi polynomials with varying nonstandard parameters”, J. Anal. Math., 94 (2004), 195–234 | DOI | MR | Zbl

[33] M. Maeda, H. Sasaki, E. Segawa, A. Suzuki, and K. Suzuki, “Scattering and inverse scattering for nonlinear quantum walks”, Discrete Contin. Dyn. Syst., 38:7 (2018), 3687–3703 | DOI | MR | Zbl

[34] J. Maldacena, “The symmetry and simplicity of the laws of physics and the Higgs boson”, European J. Phys., 37:1 (2016), 015802, 25 pp. | DOI | Zbl

[35] V. Matveev and R. Shrock, “A connection between complex-temperature properties of the 1D and 2D spin $s$ Ising model”, Phys. Lett. A, 204:5-6 (1995), 353–358 | DOI | MR | Zbl

[36] J. V. Narlikar, “Path amplitudes for Dirac particles”, J. Indian Math. Soc. (N. S.), 36 (1972), 9–32 | MR

[37] I. Novikov, “Feynman checkers: the probability to find an electron vanishes nowhere inside the light cone”, Rev. Math. Phys., 34:7 yr 2022 (2020), 2250020; (2020), 17 pp., arXiv: 2010.05088

[38] G. N. Ord, “Classical particles and the Dirac equation with an electromagnetic field”, Chaos Solitons Fractals, 8:5, Special issue (1997), 727–741 | DOI | MR | Zbl

[39] G. N. Ord and J. A. Gualtieri, “The Feynman propagator from a single path”, Phys. Rev. Lett., 89:25 (2002), 250403 | DOI

[40] F. Ozhegov, Feynman checkers: external electromagnetic field and asymptotic properties (Russian), 2022, 28 pp., arXiv: 2209.00938

[41] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory, Addison-Wesley Publ. Co., Reading, MA, 1995, xxii+842 pp. | MR

[42] S. S. Schweber, “Feynman and the visualization of space-time processes”, Rev. Modern Phys., 58:2 (1986), 449–508 | DOI | MR

[43] A. Pakharev, M. Skopenkov, and A. Ustinov, “Through the resisting net”, Mat. Prosv. Ser. 3, 18, MCCME, Moscow, 2014, 33–65 (Russian)

[44] M. Skopenkov and A. Ustinov, Feynman checkers: towards algorithmic quantum theory, 2020, 55 pp., arXiv: 2007.12879v1

[45] M. Skopenkov and A. Ustinov, Feynman checkers: auxiliary computations, Last accessed 31.12.2021 https://users.mccme.ru/mskopenkov/skopenkov-pdf/checkers-auxiliary-computations.nb

[46] M. Skopenkov and A. Ustinov, Feynman checkers: Minkowskian lattice quantum field theory, 2022, 40 pp., arXiv: 2208.14247

[47] N. J. A. Sloane (ed.), The on-line encyclopedia of integer sequences http://oeis.org/

[48] R. P. Stanley, “Irreducible symmetric group characters of rectangular shape”, Sém. Lothar. Combin., 50 (2003/04), Art. B50d, 11 pp. | MR | Zbl

[49] T. Sunada and T. Tate, “Asymptotic behavior of quantum walks on the line”, J. Funct. Anal., 262:6 (2012), 2608–2645 ; (2011), 32 pp., arXiv: 1108.1878 | DOI | MR | Zbl

[50] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., New York, 1939, ix+401 pp. | MR | Zbl

[51] S. E. Venegas-Andraca, “Quantum walks: a comprehensive review”, Quantum Inf. Process., 11:5 (2012), 1015–1106 | DOI | MR | Zbl

[52] J. Yepez, “Relativistic path integral as a lattice-based quantum algorithm”, Quantum Inf. Process., 4:6 (2005), 471–509 | DOI | MR | Zbl

[53] P. Zakorko, Feynman checkers: a uniform approximation of the wave function by Airy function, preprint, 2021