Mots-clés : Dirac equation
@article{RM_2022_77_3_a1,
author = {M. B. Skopenkov and A. V. Ustinov},
title = {Feynman checkers: towards algorithmic quantum theory},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {445--530},
year = {2022},
volume = {77},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_3_a1/}
}
M. B. Skopenkov; A. V. Ustinov. Feynman checkers: towards algorithmic quantum theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 445-530. http://geodesic.mathdoc.fr/item/RM_2022_77_3_a1/
[1] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, “One-dimensional quantum walks”, Proceedings of the thirty-third annual ACM symposium on theory of computing, ACM, New York, 2001, 37–49 | DOI | MR | Zbl
[2] C. M. Bender, L. R. Mead, and K. A. Milton, “Discrete time quantum mechanics”, Comput. Math. Appl., 28:10-12 (1994), 279–317 | DOI | MR | Zbl
[3] C. M. Bender, K. A. Milton, and D. H. Sharp, “Gauge invariance and the finite-element solution of the Schwinger model”, Phys. Rev. D (3), 31:2 (1985), 383–388 ; “Erratum”, 32:6 (1985), 1593 | DOI | MR | DOI | MR
[4] I. Bialynicki-Birula, “Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata”, Phys. Rev. D (3), 49:12 (1994), 6920–6927 | DOI | MR
[5] P. Billingsley, Probability and measure, Wiley Ser. Probab. Math. Statist., 3rd ed., John Wiley Sons, Inc., New York, 1995, xiv+593 pp. | MR | Zbl
[6] I. Bogdanov, Feynman checkers: the probability of direction reversal, 2020, 8 pp., arXiv: 2010.04583
[7] M. J. Cantero, F. A. Grünbaum, L. Moral, and L. Velázquez, “The CGMV method for quantum walks”, Quantum Inf. Process., 11:5 (2012), 1149–1192 | DOI | MR | Zbl
[8] D. Chelkak and S. Smirnov, “Discrete complex analysis on isoradial graphs”, Adv. Math., 228:3 (2011), 1590–1630 | DOI | MR | Zbl
[9] Li-Chen Chen and M. E. H. Ismail, “On asymptotics of Jacobi polynomials”, SIAM J. Math. Anal., 22:5 (1991), 1442–1449 | DOI | MR | Zbl
[10] M. Dmitriev, Feynman checkers with absorption, 2022, 10 pp., arXiv: (Russian) 2204.07861
[11] R. P. Feynman, QED: The strange theory of light and matter, rev. ed., Princeton Univ. Press, Princeton, NJ, 2006, xxiv+158 pp. | Zbl
[12] R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, International Series in Pure and Applied Physics, McGraw-Hill Book Co., Inc., New York, 1965, 365 pp. | MR | Zbl
[13] S. R. Finch, Mathematical constants, Encyclopedia Math. Appl., 94, Cambridge Univ. Press, Cambridge, 2003, xx+602 pp. | MR | Zbl
[14] G. B. Folland, Quantum field theory. A tourist guide for mathematicians, Math. Surveys Monogr., 149, Amer. Math. Soc., Providence, RI, 2008, xii+325 pp. | DOI | MR | Zbl
[15] B. Z. Foster and T. Jacobson, “Spin on a 4D Feynman checkerboard”, Internat. J. Theoret. Phys., 56:1 (2017), 129–144 | DOI | MR | Zbl
[16] B. Gaveau and L. S. Schulman, “Dirac equation path integral: interpreting the Grassmann variables”, Nuovo Cimento D (1), 11:1-2 (1989), 31–51 | DOI | MR
[17] K. Georgopoulos, C. Emary, and P. Zuliani, “Comparison of quantum-walk implementations on noisy intermediate-scale quantum computers”, Phys. Rev. A, 103:2 (2021), 022408, 10 pp. | DOI | MR
[18] H. A. Gersch, “Feynman's relativistic chessboard as an Ising model”, Internat. J. Theoret. Phys., 20:7 (1981), 491–501 | DOI
[19] I. S. Gradshteyn and I. M. Ryzhik, Tables of integrals, sums, series and products, 4th ed., Fizmatgiz, Moscow, 1963, 1100 pp. ; English transl. 4th ed., Academic Press, New York–London, 1965, xiv+1086 pp. | MR | Zbl | MR | Zbl
[20] G. Grimmett, S. Janson, and P. F. Scudo, “Weak limits for quantum random walks”, Phys. Rev. E, 69:2 (2004), 026119 | DOI
[21] M. N. Huxley, Area, lattice points, and exponential sums, London Math. Soc. Monogr. (N. S.), 13, The Clarendon Press, Oxford Univ. Press, New York, 1996, xii+494 pp. | MR | Zbl
[22] T. Jacobson, “Feynman's checkerboard and other games”, Non-linear equations in classical and quantum field theory (Meudon/Paris, 1983/1984), Lecture Notes in Phys., 226, Springer, Berlin, 1985, 386–395 | DOI | MR | Zbl
[23] T. Jacobson and L. S. Schulman, “Quantum stochastics: the passage from a relativistic to a non-relativistic path integral”, J. Phys. A, 17:2 (1984), 375–383 | DOI | MR
[24] P. Jizba, “Feynman checkerboard picture and neutrino oscillations”, J. Phys. Conf. Ser., 626 (2015), 012048, 11 pp. | DOI
[25] G. L. Jones, “Complex temperatures and phase transitions”, J. Math. Phys., 7:11 (1966), 2000–2005 | DOI
[26] A. A. Karatsuba, Basic analytic number theory, 2nd ed., Nauka, Moscow, 1983, 240 pp. ; English transl. Springer-Verlag, Berlin, 1993, xiv+222 pp. | MR | DOI | MR | Zbl
[27] J. Kempe, “Quantum random walks: an introductory overview”, Contemp. Phys., 50:1 (2009), 339–359 | DOI
[28] R. Kenyon, “The Laplacian and Dirac operators on critical planar graphs”, Invent. Math., 150:2 (2002), 409–439 | DOI | MR | Zbl
[29] N. Konno, “A new type of limit theorems for the one-dimensional quantum random walk”, J. Math. Soc. Japan, 57:4 (2005), 1179–1195 | DOI | MR | Zbl
[30] N. Konno, “Quantum walks”, Quantum potential theory, Lecture Notes in Math., 1954, Springer, Berlin, 2008, 309–452 | DOI | MR | Zbl
[31] N. Konno, “Quantum walks”, Sugaku Expositions, 33:2 (2020), 135–158 | DOI | MR | Zbl
[32] A. B. J. Kuijlaars and A. Martínez-Finkelshtein, “Strong asymptotics for Jacobi polynomials with varying nonstandard parameters”, J. Anal. Math., 94 (2004), 195–234 | DOI | MR | Zbl
[33] M. Maeda, H. Sasaki, E. Segawa, A. Suzuki, and K. Suzuki, “Scattering and inverse scattering for nonlinear quantum walks”, Discrete Contin. Dyn. Syst., 38:7 (2018), 3687–3703 | DOI | MR | Zbl
[34] J. Maldacena, “The symmetry and simplicity of the laws of physics and the Higgs boson”, European J. Phys., 37:1 (2016), 015802, 25 pp. | DOI | Zbl
[35] V. Matveev and R. Shrock, “A connection between complex-temperature properties of the 1D and 2D spin $s$ Ising model”, Phys. Lett. A, 204:5-6 (1995), 353–358 | DOI | MR | Zbl
[36] J. V. Narlikar, “Path amplitudes for Dirac particles”, J. Indian Math. Soc. (N. S.), 36 (1972), 9–32 | MR
[37] I. Novikov, “Feynman checkers: the probability to find an electron vanishes nowhere inside the light cone”, Rev. Math. Phys., 34:7 yr 2022 (2020), 2250020; (2020), 17 pp., arXiv: 2010.05088
[38] G. N. Ord, “Classical particles and the Dirac equation with an electromagnetic field”, Chaos Solitons Fractals, 8:5, Special issue (1997), 727–741 | DOI | MR | Zbl
[39] G. N. Ord and J. A. Gualtieri, “The Feynman propagator from a single path”, Phys. Rev. Lett., 89:25 (2002), 250403 | DOI
[40] F. Ozhegov, Feynman checkers: external electromagnetic field and asymptotic properties (Russian), 2022, 28 pp., arXiv: 2209.00938
[41] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory, Addison-Wesley Publ. Co., Reading, MA, 1995, xxii+842 pp. | MR
[42] S. S. Schweber, “Feynman and the visualization of space-time processes”, Rev. Modern Phys., 58:2 (1986), 449–508 | DOI | MR
[43] A. Pakharev, M. Skopenkov, and A. Ustinov, “Through the resisting net”, Mat. Prosv. Ser. 3, 18, MCCME, Moscow, 2014, 33–65 (Russian)
[44] M. Skopenkov and A. Ustinov, Feynman checkers: towards algorithmic quantum theory, 2020, 55 pp., arXiv: 2007.12879v1
[45] M. Skopenkov and A. Ustinov, Feynman checkers: auxiliary computations, Last accessed 31.12.2021 https://users.mccme.ru/mskopenkov/skopenkov-pdf/checkers-auxiliary-computations.nb
[46] M. Skopenkov and A. Ustinov, Feynman checkers: Minkowskian lattice quantum field theory, 2022, 40 pp., arXiv: 2208.14247
[47] N. J. A. Sloane (ed.), The on-line encyclopedia of integer sequences http://oeis.org/
[48] R. P. Stanley, “Irreducible symmetric group characters of rectangular shape”, Sém. Lothar. Combin., 50 (2003/04), Art. B50d, 11 pp. | MR | Zbl
[49] T. Sunada and T. Tate, “Asymptotic behavior of quantum walks on the line”, J. Funct. Anal., 262:6 (2012), 2608–2645 ; (2011), 32 pp., arXiv: 1108.1878 | DOI | MR | Zbl
[50] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., New York, 1939, ix+401 pp. | MR | Zbl
[51] S. E. Venegas-Andraca, “Quantum walks: a comprehensive review”, Quantum Inf. Process., 11:5 (2012), 1015–1106 | DOI | MR | Zbl
[52] J. Yepez, “Relativistic path integral as a lattice-based quantum algorithm”, Quantum Inf. Process., 4:6 (2005), 471–509 | DOI | MR | Zbl
[53] P. Zakorko, Feynman checkers: a uniform approximation of the wave function by Airy function, preprint, 2021