Feynman checkers: towards algorithmic quantum theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 445-530
Voir la notice de l'article provenant de la source Math-Net.Ru
We survey and develop the most elementary model of electron motion introduced by Feynman. In this game, a checker moves on a checkerboard by simple rules, and we count the turns. Feynman checkers are also known as a one-dimensional quantum walk or an Ising model at imaginary temperature. We solve mathematically a Feynman problem from 1965, which was to prove that the discrete model (for large time, small average velocity, and small lattice step) is consistent with the continuum one. We study asymptotic properties of the model (for small lattice step and large time) improving the results due to Narlikar from 1972 and to Sunada and Tate from 2012.
For the first time we observe and prove concentration of measure in the small-lattice-step limit. We perform the second quantization of the model.
We also present a survey of known results on Feynman checkers.
Bibliography: 53 titles.
Keywords:
Feynman checkerboard, quantum walk, Ising model, Young diagram, stationary phase method.
Mots-clés : Dirac equation
Mots-clés : Dirac equation
@article{RM_2022_77_3_a1,
author = {M. B. Skopenkov and A. V. Ustinov},
title = {Feynman checkers: towards algorithmic quantum theory},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {445--530},
publisher = {mathdoc},
volume = {77},
number = {3},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2022_77_3_a1/}
}
TY - JOUR AU - M. B. Skopenkov AU - A. V. Ustinov TI - Feynman checkers: towards algorithmic quantum theory JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 445 EP - 530 VL - 77 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2022_77_3_a1/ LA - en ID - RM_2022_77_3_a1 ER -
M. B. Skopenkov; A. V. Ustinov. Feynman checkers: towards algorithmic quantum theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 77 (2022) no. 3, pp. 445-530. http://geodesic.mathdoc.fr/item/RM_2022_77_3_a1/