Mots-clés : Klein–Gordon equation, soliton, Lie group, quantum transitions
@article{RM_2020_75_1_a0,
author = {A. I. Komech and E. A. Kopylova},
title = {Attractors of nonlinear {Hamiltonian} partial differential equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--87},
year = {2020},
volume = {75},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2020_75_1_a0/}
}
TY - JOUR AU - A. I. Komech AU - E. A. Kopylova TI - Attractors of nonlinear Hamiltonian partial differential equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 1 EP - 87 VL - 75 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2020_75_1_a0/ LA - en ID - RM_2020_75_1_a0 ER -
A. I. Komech; E. A. Kopylova. Attractors of nonlinear Hamiltonian partial differential equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 75 (2020) no. 1, pp. 1-87. http://geodesic.mathdoc.fr/item/RM_2020_75_1_a0/
[1] M. Abraham, “Prinzipien der Dynamik des Elektrons”, Phys. Z., 4 (1902), 57–63
[2] M. Abraham, Theorie der Elektrizität, v. 2, Elektromagnetische Theorie der Strahlung, B. G. Teubner, Leipzig, 1905, 404 pp. | Zbl
[3] R. K. Adair, E. C. Fowler, Strange particles, Intersci. Publ. John Wiley Sons, New York–London, 1963, viii+151 pp. | MR | Zbl
[4] R. Adami, D. Noja, C. Ortoleva, “Orbital and asymptotic stability for standing waves of a nonlinear Schrödinger equation with concentrated nonlinearity in dimension three”, J. Math. Phys., 54:1 (2013), 013501, 33 pp. | DOI | MR | Zbl
[5] S. Agmon, “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2:2 (1975), 151–218 | MR | Zbl
[6] S. Albeverio, R. Figari, “Quantum fields and point interactions”, Rend. Mat. Appl. (7), 39:2 (2018), 161–180 | MR | Zbl
[7] L. Andersson, P. Blue, “Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior”, J. Hyperbolic Differ. Equ., 12:4 (2015), 689–743 | DOI | MR | Zbl
[8] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992, x+532 pp. | MR | MR | Zbl | Zbl
[9] V. Bach, T. Chen, J. Faupin, J. Fröhlich, I. M. Sigal, “Effective dynamics of an electron coupled to an external potential in non-relativistic QED”, Ann. Henri Poincaré, 14:6 (2013), 1573–1597 | DOI | MR | Zbl
[10] D. Bambusi, S. Cuccagna, “On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential”, Amer. J. Math., 133:5 (2011), 1421–1468 | DOI | MR | Zbl
[11] D. Bambusi, L. Galgani, “Some rigorous results on the Pauli–Fierz model of classical electrodynamics”, Ann. Inst. H. Poincaré Phys. Théor., 58:2 (1993), 155–171 | MR | Zbl
[12] V. E. Barnes et al., “Observation of a hyperon with strangeness minus three”, Phys. Rev. Lett., 12:8 (1964), 204–206 | DOI
[13] M. Beals, W. Strauss, “$L^p$ estimates for the wave equation with a potential”, Comm. Partial Differential Equations, 18:7-8 (1993), 1365–1397 | DOI | MR | Zbl
[14] M. Beceanu, M. Goldberg, “Schrödinger dispersive estimates for a scaling-critical class of potentials”, Comm. Math. Phys., 314:2 (2012), 471–481 | DOI | MR | Zbl
[15] M. Beceanu, M. Goldberg, “Strichartz estimates and maximal operators for the wave equation in $\mathbb{R}^3$”, J. Funct. Anal., 266:3 (2014), 1476–1510 | DOI | MR | Zbl
[16] A. Bensoussan, C. Iliine, A. Komech, “Breathers for a relativistic nonlinear wave equation”, Arch. Ration. Mech. Anal., 165:4 (2002), 317–345 | DOI | MR | Zbl
[17] H. Berestycki, P.-L. Lions, “Nonlinear scalar field equations. I. Existence of a ground state”, Arch. Ration. Mech. Anal., 82:4 (1983), 313–345 | DOI | MR | Zbl
[18] H. Berestycki, P.-L. Lions, “Nonlinear scalar field equations. II. Existence of infinitely many solutions”, Arch. Ration. Mech. Anal., 82:4 (1983), 347–375 | DOI | MR | Zbl
[19] F. A. Berezin, L. D. Faddeev, “A remark on Schrödinger's equation with a singular potential”, Soviet Math. Dokl., 2 (1961), 372–375 | MR | Zbl
[20] N. Bohr, “On the constitution of atoms and molecules. I”, Philos. Mag. (6), 26:151 (1913), 1–25 ; “II”:153, 476–502 ; “III”:155, 857–875 | DOI | Zbl | DOI | DOI
[21] N. Bohr, “Discussions with Einstein on epistemological problems in atomic physics”, Albert Einstein: philosopher-scientist, The Library of Living Philosophers, 7, The Library of Living Philosophers, Inc., Evaston, IL, 1949, 201–241 | DOI
[22] N. Boussaid, “Stable directions for small nonlinear Dirac standing waves”, Comm. Math. Phys., 268:3 (2006), 757–817 | DOI | MR | Zbl
[23] N. Boussaid, S. Cuccagna, “On stability of standing waves of nonlinear Dirac equations”, Comm. Partial Differential Equations, 37:6 (2012), 1001–1056 | DOI | MR | Zbl
[24] V. S. Buslaev, A. I. Komech, E. A. Kopylova, D. Stuart, “On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator”, Comm. Partial Differential Equations, 33:4 (2008), 669–705 | DOI | MR | Zbl
[25] V. S. Buslaev, G. S. Perel'man, “Scattering for the nonlinear Schrödinger equation: states close to a soliton”, St. Petersburg Math. J., 4:6 (1993), 1111–1142 | MR | Zbl
[26] V. S. Buslaev, G. S. Perelman, “On the stability of solitary waves for nonlinear Schrödinger equations”, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Adv. Math. Sci., 22, Amer. Math. Soc., Providence, RI, 1995, 75–98 | DOI | MR | Zbl
[27] V. S. Buslaev, C. Sulem, “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 419–475 | DOI | MR | Zbl
[28] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp. | MR | Zbl
[29] G. M. Coclite, V. Georgiev, “Solitary waves for Maxwell–Schrödinger equations”, Electron. J. Differential Equations, 2004 (2004), 94, 31 pp. (electronic) | MR | Zbl
[30] A. Comech, “On global attraction to solitary waves. Klein–Gordon equation with mean field interaction at several points”, J. Differential Equations, 252:10 (2012), 5390–5413 | DOI | MR | Zbl
[31] A. Comech, “Weak attractor of the Klein–Gordon field in discrete space-time interacting with a nonlinear oscillator”, Discrete Contin. Dyn. Syst., 33:7 (2013), 2711–2755 | DOI | MR | Zbl
[32] F. H. J. Cornish, “Classical radiation theory and point charges”, Proc. Phys. Soc., 86:3 (1965), 427–442 | DOI | MR
[33] S. Cuccagna, “Stabilization of solutions to nonlinear Schrödinger equations”, Comm. Pure Appl. Math., 54:9 (2001), 1110–1145 | DOI | MR | Zbl
[34] S. Cuccagna, “The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states”, Comm. Math. Phys., 305:2 (2011), 279–331 | DOI | MR | Zbl
[35] S. Cuccagna, T. Mizumachi, “On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations”, Comm. Math. Phys., 284:1 (2008), 51–77 | DOI | MR | Zbl
[36] M. Dafermos, I. Rodnianski, “A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds”, Invent. Math., 185:3 (2011), 467–559 | DOI | MR | Zbl
[37] P. D'Ancona, “Kato smoothing and Strichartz estimates for wave equations with magnetic potentials”, Comm. Math. Phys., 335:1 (2015), 1–16 | DOI | MR | Zbl
[38] P. D'Ancona, L. Fanelli, L. Vega, N. Visciglia, “Endpoint Strichartz estimates for the magnetic Schrödinger equation”, J. Funct. Anal., 258:10 (2010), 3227–3240 | DOI | MR | Zbl
[39] S. Demoulini, D. Stuart, “Adiabatic limit and the slow motion of vortices in a Chern–Simons–Schrödinger system”, Comm. Math. Phys., 290:2 (2009), 597–632 | DOI | MR | Zbl
[40] P. A. M. Dirac, “Classical theory of radiating electrons”, Proc. Roy. Soc. London Ser. A, 167:929 (1938), 148–169 | DOI | Zbl
[41] R. Donninger, W. Schlag, A. Soffer, “On pointwise decay of linear waves on a Schwarzschild black hole background”, Comm. Math. Phys., 309:1 (2012), 51–86 | DOI | MR | Zbl
[42] T. Duyckaerts, C. Kenig, F. Merle, “Profiles of bounded radial solutions of the focusing, energy-critical wave equation”, Geom. Funct. Anal., 22:3 (2012), 639–698 | DOI | MR | Zbl
[43] T. Duyckaerts, C. Kenig, F. Merle, “Scattering for radial, bounded solutions of focusing supercritical wave equations”, Int. Math. Res. Not. IMRN, 2014:1 (2014), 224–258 | DOI | MR | Zbl
[44] T. Duyckaerts, C. Kenig, F. Merle, “Concentration-compactness and universal profiles for the non-radial energy critical wave equation”, Nonlinear Anal., 138 (2016), 44–82 | DOI | MR | Zbl
[45] A. V. Dymov, “Dissipative effects in a linear Lagrangian system with infinitely many degrees of freedom”, Izv. Math., 76:6 (2012), 1116–1149 | DOI | DOI | MR | Zbl
[46] W. Eckhaus, A. van Harten, The inverse scattering transformation and the theory of solitons. An introduction, North-Holland Math. Stud., 50, North-Holland Publishing Co., Amsterdam–New York, 1981, xi+222 pp. | MR | Zbl
[47] I. E. Egorova, E. A. Kopylova, V. A. Marchenko, G. Teschl, “Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited”, Russian Math. Surveys, 71:3 (2016), 391–415 | DOI | DOI | MR | Zbl
[48] I. Egorova, E. A. Kopylova, G. Teschl, “Dispersion estimates for one-dimensional discrete Schrödinger and wave equations”, J. Spectr. Theory, 5:4 (2015), 663–696 | DOI | MR | Zbl
[49] A. Einstein, “Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?”, Ann. der Phys. (4), 18 (1905), 639–641 | DOI
[50] M. B. Erdoğan, M. Goldberg, W. R. Green, “Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy”, Comm. Partial Differential Equations, 39:10 (2014), 1936–1964 | DOI | MR | Zbl
[51] M. J. Esteban, V. Georgiev, E. Séré, “Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations”, Calc. Var. Partial Differential Equations, 4:3 (1996), 265–281 | DOI | MR | Zbl
[52] R. P. Feynman, R. B. Leighton, M. Sands, The Feynman lectures on physics, v. 2, Mainly electromagnetism and matter, Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1964, xii+569 pp. | MR | MR | MR | MR | Zbl
[53] C. Foias, O. Manley, R. Rosa, R. Temam, Navier–Stokes equations and turbulence, Encyclopedia Math. Appl., 83, Cambridge Univ. Press, Cambridge, 2001, xiv+347 pp. | DOI | MR | Zbl
[54] J. Fröhlich, Z. Gang, “Emission of Cherenkov radiation as a mechanism for Hamiltonian friction”, Adv. Math., 264 (2014), 183–235 | DOI | MR | Zbl
[55] J. Fröhlich, S. Gustafson, B. L. G. Jonsson, I. M. Sigal, “Solitary wave dynamics in an external potential”, Comm. Math. Phys., 250:3 (2004), 613–642 | DOI | MR | Zbl
[56] J. Fröhlich, T.-P. Tsai, H.-T. Yau, “On the point-particle (Newtonian) limit of the non-linear Hartree equation”, Comm. Math. Phys., 225:2 (2002), 223–274 | DOI | MR | Zbl
[57] G. I. Gaudry, “Quasimeasures and operators commuting with convolution”, Pacific J. Math., 18:3 (1966), 461–476 | DOI | MR | Zbl
[58] M. Gell-Mann, “Symmetries of baryons and mesons”, Phys. Rev. (2), 125:3 (1962), 1067–1084 | DOI | MR | Zbl
[59] H.-P. Gittel, J. Kijowski, E. Zeidler, “The relativistic dynamics of the combined particle-field system in renormalized classical electrodynamics”, Comm. Math. Phys., 198:3 (1998), 711–736 | DOI | MR | Zbl
[60] M. Goldberg, W. R. Green, “Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues. I. The odd dimensional case”, J. Funct. Anal., 269:3 (2015), 633–682 | DOI | MR | Zbl
[61] M. Goldberg, W. R. Green, “Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues. II. The even dimensional case”, J. Spectr. Theory, 7:1 (2017), 33–86 | DOI | MR | Zbl
[62] M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal., 74:1 (1987), 160–197 | DOI | MR | Zbl
[63] M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. II”, J. Funct. Anal., 94:2 (1990), 308–348 | DOI | MR | Zbl
[64] J. K. Hale, Asymptotic behavior of dissipative systems, Math. Surveys Monogr., 25, Amer. Math. Soc., Providence, RI, 1988, x+198 pp. | MR | Zbl
[65] F. Halzen, A. D. Martin, Quarks and leptons: an introductory course in modern particle physics, John Wiley Sons, Inc., New York, 1984, xvi+396 pp.
[66] T. Harada, H. Maeda, “Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity”, Classical Quantum Gravity, 21:2 (2004), 371–389 | DOI | MR | Zbl
[67] A. Haraux, Systèmes dynamiques dissipatifs et applications, Rech. Math. Appl., 17, Masson, Paris, 1991, xii+132 pp. | MR | Zbl
[68] W. Heisenberg, “Der derzeitige Stand der nichtlinearen Spinortheorie der Elementarteilchen”, Acta Phys. Austriaca, 14 (1961), 328–339 | MR | Zbl
[69] W. Heisenberg, Introduction to the unified field theory of elementary particles, Intersci. Publ. John Wiley Sons, London–New York–Sydney, 1966, ix+177 pp. | Zbl
[70] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981, iv+348 pp. | DOI | MR | MR | Zbl | Zbl
[71] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr., 4 (1951), 213–231 | DOI | MR | Zbl
[72] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, 2nd ed., Springer-Verlag, Berlin, 1990, xii+440 pp. ; L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986, 462 pp. | DOI | MR | Zbl | MR | Zbl
[73] L. Houllevigue, L'évolution des sciences, Librairie A. Collin, Paris, 1908, xi+287 pp.
[74] V. M. Imaykin, “Soliton asymptotics for systems of ‘field-particle’ type”, Russian Math. Surveys, 68:2 (2013), 227–281 | DOI | DOI | MR | Zbl
[75] V. Imaykin, A. Komech, P. A. Markowich, “Scattering of solitons of the Klein–Gordon equation coupled to a classical particle”, J. Math. Phys., 44:3 (2003), 1202–1217 | DOI | MR | Zbl
[76] V. Imaykin, A. Komech, N. Mauser, “Soliton-type asymptotics for the coupled Maxwell–Lorentz equations”, Ann. Henri Poincaré, 5:6 (2004), 1117–1135 | DOI | MR | Zbl
[77] V. Imaykin, A. Komech, H. Spohn, “Soliton-type asymptotic and scattering for a charge coupled to the Maxwell field”, Russ. J. Math. Phys., 9:4 (2002), 428–436 | MR | Zbl
[78] V. Imaykin, A. Komech, H. Spohn, “Scattering theory for a particle coupled to a scalar field”, Discrete Contin. Dyn. Syst., 10:1-2 (2004), 387–396 | DOI | MR | Zbl
[79] V. Imaykin, A. Komech, H. Spohn, “Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit”, Monatsh. Math., 142:1-2 (2004), 143–156 | DOI | MR | Zbl
[80] V. Imaykin, A. Komech, H. Spohn, “Scattering asymptotics for a charged particle coupled to the Maxwell field”, J. Math. Phys., 52:4 (2011), 042701, 33 pp. | DOI | MR | Zbl
[81] V. Imaykin, A. Komech, B. Vainberg, “On scattering of solitons for the Klein–Gordon equation coupled to a particle”, Comm. Math. Phys., 268:2 (2006), 321–367 | DOI | MR | Zbl
[82] V. Imaykin, A. Komech, B. Vainberg, “Scattering of solitons for coupled wave-particle equations”, J. Math. Anal. Appl., 389:2 (2012), 713–740 | DOI | MR | Zbl
[83] J. D. Jackson, Classical electrodynamics, 3rd ed., John Wiley Sons, Inc., New York, 1999, xxi+808 pp. ; Dzh. Dzhekson, Klassicheskaya elektrodinamika, Mir, M., 1965, 704 pp. | MR | Zbl
[84] A. Jensen, T. Kato, “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46:3 (1979), 583–611 | DOI | MR | Zbl
[85] K. Jörgens, “Das Anfangswertproblem im Großen für eine Klasse nichtlinearer Wellengleichungen”, Math. Z., 77 (1961), 295–308 | DOI | MR | Zbl
[86] J.-L. Journé, A. Soffer, C. D. Sogge, “Decay estimates for Schrödinger operators”, Comm. Pure Appl. Math., 44:5 (1991), 573–604 | DOI | MR | Zbl
[87] C. Kenig, A. Lawrie, B. Liu, W. Schlag, “Stable soliton resolution for exterior wave maps in all equivariance classes”, Adv. Math., 285 (2015), 235–300 | DOI | MR | Zbl
[88] C. E. Kenig, A. Lawrie, W. Schlag, “Relaxation of wave maps exterior to a ball to harmonic maps for all data”, Geom. Funct. Anal., 24:2 (2014), 610–647 | DOI | MR | Zbl
[89] C. E. Kenig, F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case”, Invent. Math., 166:3 (2006), 645–675 | DOI | MR | Zbl
[90] C. E. Kenig, F. Merle, “Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation”, Acta Math., 201:2 (2008), 147–212 | DOI | MR | Zbl
[91] C. E. Kenig, F. Merle, “Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications”, Amer. J. Math., 133:4 (2011), 1029–1065 | DOI | MR | Zbl
[92] A. A. Komech, A. I. Komech, “On the Titchmarsh convolution theorem for distributions on the circle”, Funct. Anal. Appl., 47:1 (2013), 21–26 | DOI | DOI | MR | Zbl
[93] A. I. Komech, “On the stabilization of interaction of a string with a nonlinear oscillator”, Moscow Univ. Math. Bull., 46:6 (1991), 34–39 | MR | Zbl
[94] A. I. Komech, “Linear partial differential equations with constant coefficients”, Partial differential equations II, Encyclopaedia Math. Sci., 31, Springer, Berlin, 1994, 121–255 | DOI | MR | MR | Zbl | Zbl
[95] A. I. Komech, “On stabilization of string-nonlinear oscillator interaction”, J. Math. Anal. Appl., 196:1 (1995), 384–409 | DOI | MR | Zbl
[96] A. I. Komech, “On the stabilization of string-oscillator interaction”, Russ. J. Math. Phys., 3:2 (1995), 227–247 | MR | Zbl
[97] A. Komech, “On transitions to stationary states in one-dimensional nonlinear wave equations”, Arch. Ration. Mech. Anal., 149:3 (1999), 213–228 | DOI | MR | Zbl
[98] A. I. Komech, “Attractors of non-linear Hamiltonian one-dimensional wave equations”, Russian Math. Surveys, 55:1 (2000), 43–92 | DOI | DOI | MR | Zbl
[99] A. I. Komech, “On attractor of a singular nonlinear $\mathrm U(1)$-invariant Klein–Gordon equation”, Progress in analysis (Berlin, 2001), v. I, II, World Sci. Publ., River Edge, NJ, 2003, 599–611 | DOI | MR | Zbl
[100] A. Komech, Quantum mechanics: genesis and achievements, Springer, Dordrecht, 2013, xviii+285 pp. | DOI | MR | Zbl
[101] A. Komech, “Attractors of Hamilton nonlinear PDEs”, Discrete Contin. Dyn. Syst., 36:11 (2016), 6201–6256 | DOI | MR | Zbl
[102] A. Komech, “Quantum jumps and attractors of Maxwell–Schrödinger equations”, Nonlinearity (to appear); 2019, 14 pp., arXiv: 1907.04297
[103] A. I. Komech, A. A. Komech, “On the global attraction to solitary waves for the Klein–Gordon equation coupled to a nonlinear oscillator”, C. R. Math. Acad. Sci. Paris, 343:2 (2006), 111–114 | DOI | MR | Zbl
[104] A. Komech, A. Komech, “Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field”, Arch. Ration. Mech. Anal., 185:1 (2007), 105–142 | DOI | MR | Zbl
[105] A. I. Komech, A. A. Komech, “Global attraction to solitary waves in models based on the Klein–Gordon equation”, SIGMA, 4 (2008), 010, 23 pp. | DOI | MR | Zbl
[106] A. Komech, A. Komech, “Global attraction to solitary waves for Klein–Gordon equation with mean field interaction”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26:3 (2009), 855–868 | DOI | MR | Zbl
[107] A. Komech, A. Komech, “On global attraction to solitary waves for the Klein–Gordon field coupled to several nonlinear oscillators”, J. Math. Pures Appl. (9), 93:1 (2010), 91–111 | DOI | MR | Zbl
[108] A. Komech, A. Komech, “Global attraction to solitary waves for a nonlinear Dirac equation with mean field interaction”, SIAM J. Math. Anal., 42:6 (2010), 2944–2964 | DOI | MR | Zbl
[109] A. Komech, E. Kopylova, “Scattering of solitons for the Schrödinger equation coupled to a particle”, Russ. J. Math. Phys., 13:2 (2006), 158–187 | DOI | MR | Zbl
[110] A. I. Komech, E. A. Kopylova, “Weighted energy decay for 1D Klein–Gordon equation”, Comm. Partial Differential Equations, 35:2 (2010), 353–374 | DOI | MR | Zbl
[111] A. I. Komech, E. A. Kopylova, “Weighted energy decay for 3D Klein–Gordon equation”, J. Differential Equations, 248:3 (2010), 501–520 | DOI | MR | Zbl
[112] A. Komech, E. Kopylova, Dispersion decay and scattering theory, John Wiley Sons, Inc., Hoboken, NJ, 2012, xxvi+175 pp. | DOI | MR | Zbl
[113] A. I. Komech, E. A. Kopylova, “Dispersion decay for the magnetic Schrödinger equation”, J. Funct. Anal., 264:3 (2013), 735–751 | DOI | MR | Zbl
[114] A. Komech, E. Kopylova, “On eigenfunction expansion of solutions to the Hamilton equations”, J. Stat. Phys., 154:1-2 (2014), 503–521 | DOI | MR | Zbl
[115] A. I. Komech, E. A. Kopylova, “Weighted energy decay for magnetic Klein–Gordon equation”, Appl. Anal., 94:2 (2015), 218–232 | DOI | MR | Zbl
[116] A. Komech, E. Kopylova, “On the eigenfunction expansion for Hamilton operators”, J. Spectr. Theory, 5:2 (2015), 331–361 | DOI | MR | Zbl
[117] A. I. Komech, E. A. Kopylova, S. A. Kopylov, “On nonlinear wave equations with parabolic potentials”, J. Spectr. Theory, 3:4 (2013), 485–503 | DOI | MR | Zbl
[118] A. I. Komech, E. A. Kopylova, M. Kunze, “Dispersive estimates for 1D discrete Schrödinger and Klein–Gordon equations”, Appl. Anal., 85:12 (2006), 1487–1508 | DOI | MR | Zbl
[119] A. I. Komech, E. A. Kopylova, H. Spohn, “Scattering of solitons for Dirac equation coupled to a particle”, J. Math. Anal. Appl., 383:2 (2011), 265–290 | DOI | MR | Zbl
[120] A. Komech, E. Kopylova, D. Stuart, “On asymptotic stability of solitons in a nonlinear Schrödinger equation”, Commun. Pure Appl. Anal., 11:3 (2012), 1063–1079 | DOI | MR | Zbl
[121] A. I. Komech, E. A. Kopylova, B. R. Vainberg, “On dispersive properties of discrete 2D Schrödinger and Klein–Gordon equations”, J. Funct. Anal., 254:8 (2008), 2227–2254 | DOI | MR | Zbl
[122] A. Komech, M. Kunze, H. Spohn, “Effective dynamics for a mechanical particle coupled to a wave field”, Comm. Math. Phys., 203:1 (1999), 1–19 | DOI | MR | Zbl
[123] A. I. Komech, N. J. Mauser, A. P. Vinnichenko, “Attraction to solitons in relativistic nonlinear wave equations”, Russ. J. Math. Phys., 11:3 (2004), 289–307 | MR | Zbl
[124] A. I. Komech, A. E. Merzon, “Scattering in the nonlinear Lamb system”, Phys. Lett. A, 373:11 (2009), 1005–1010 | DOI | MR | Zbl
[125] A. I. Komech, A. E. Merzon, “On asymptotic completeness for scattering in the nonlinear Lamb system”, J. Math. Phys., 50:2 (2009), 023514, 10 pp. | DOI | MR | Zbl
[126] A. I. Komech, A. E. Merzon, “On asymptotic completeness of scattering in the nonlinear Lamb system. II”, J. Math. Phys., 54:1 (2013), 012702, 9 pp. | DOI | MR | Zbl
[127] A. Komech, A. Merzon, Stationary diffraction by wedges. Method of automorphic functions on complex characteristics, Lecture Notes in Math., 2249, Springer, Cham, 2019, xi+165 pp. | DOI | Zbl
[128] A. Komech, H. Spohn, “Soliton-like asymptotics for a classical particle interacting with a scalar wave field”, Nonlinear Anal., 33:1 (1998), 13–24 | DOI | MR | Zbl
[129] A. Komech, H. Spohn, “Long-time asymptotics for the coupled Maxwell–Lorentz equations”, Comm. Partial Differential Equations, 25:3-4 (2000), 559–584 | DOI | MR | Zbl
[130] A. Komech, H. Spohn, M. Kunze, “Long-time asymptotics for a classical particle interacting with a scalar wave field”, Comm. Partial Differential Equations, 22:1-2 (1997), 307–335 | DOI | MR | Zbl
[131] E. A. Kopylova, “Dispersion estimates for discrete Schrödinger and Klein–Gordon equations”, St. Petersburg Math. J., 21:5 (2010), 743–760 | DOI | MR | Zbl
[132] E. A. Kopylova, “On asymptotic stability of solitary waves in the discrete Schrödinger equation coupled to a nonlinear oscillator”, Nonlinear Anal., 71:7-8 (2009), 3031–3046 | DOI | MR | Zbl
[133] E. A. Kopylova, “On asymptotic stability of solitary waves in discrete Klein–Gordon equation coupled to a nonlinear oscillator”, Appl. Anal., 89:9 (2010), 1467–1492 | DOI | MR | Zbl
[134] E. A. Kopylova, “Dispersive estimates for the Schrödinger and Klein–Gordon equations”, Russian Math. Surveys, 65:1 (2010), 95–142 | DOI | DOI | MR | Zbl
[135] E. A. Kopylova, “Asymptotic stability of solitons for nonlinear hyperbolic equations”, Russian Math. Surveys, 68:2 (2013), 283–334 | DOI | DOI | MR | Zbl
[136] E. Kopylova, “On global attraction to solitary waves for the Klein–Gordon equation with concentrated nonlinearity”, Nonlinearity, 30:11 (2017), 4191–4207 | DOI | MR | Zbl
[137] E. Kopylova, “On global attraction to stationary states for wave equation with concentrated nonlinearity”, J. Dynam. Differential Equations, 30:1 (2018), 107–116 | DOI | MR | Zbl
[138] E. Kopylova, “On dispersion decay for 3D Klein–Gordon equation”, Discrete Contin. Dyn. Syst., 38:11 (2018), 5765–5780 | DOI | MR | Zbl
[139] E. A. Kopylova, A. I. Komech, “Long time decay for 2D Klein–Gordon equation”, J. Funct. Anal., 259:2 (2010), 477–502 | DOI | MR | Zbl
[140] E. A. Kopylova, A. I. Komech, “On asymptotic stability of moving kink for relativistic Ginzburg–Landau equation”, Comm. Math. Phys., 302:1 (2011), 225–252 | DOI | MR | Zbl
[141] E. Kopylova, A. I. Komech, “On asymptotic stability of kink for relativistic Ginzburg–Landau equations”, Arch. Ration. Mech. Anal., 202:1 (2011), 213–245 | DOI | MR | Zbl
[142] E. Kopylova, A. Komech, “On global attractor of 3D Klein–Gordon equation with several concentrated nonlinearities”, Dyn. Partial Differ. Equ., 16:2 (2019), 105–124 | DOI | MR | Zbl
[143] E. Kopylova, A. Komech, “Global attractor for 1D Dirac field coupled to nonlinear oscillator”, Comm. Math. Phys., Publ. online 2019, 1–31 | DOI
[144] E. Kopylova, G. Teschl, “Dispersion estimates for one-dimensional discrete Dirac equations”, J. Math. Anal. Appl., 434:1 (2016), 191–208 | DOI | MR | Zbl
[145] V. V. Kozlov, “Kinetics of collisionless continuous medium”, Regul. Chaotic Dyn., 6:3 (2001), 235–251 | DOI | MR | Zbl
[146] V. V. Kozlov, O. G. Smolyanov, “Wigner function and diffusion in a collision-free medium of quantum particles”, Theory Probab. Appl., 51:1 (2007), 168–181 | DOI | DOI | MR | Zbl
[147] V. V. Kozlov, D. V. Treshchev, “Weak convergence of solutions of the Liouville equation for nonlinear Hamiltonian systems”, Theor. Math. Phys., 134:3 (2003), 339–350 | DOI | DOI | MR | Zbl
[148] V. V. Kozlov, D. V. Treshchev, “Evolution of measures in the phase space of nonlinear Hamiltonian systems”, Theor. Math. Phys., 136:3 (2003), 1325–1335 | DOI | DOI | MR | Zbl
[149] M. G. Kreĭn, G. K. Langer, “The spectral function of a selfadjoint operator in a space with indefinite metric”, Soviet Math. Dokl., 4 (1963), 1236–1239 | MR | Zbl
[150] J. Krieger, K. Nakanishi, W. Schlag, “Center-stable manifold of the ground state in the energy space for the critical wave equation”, Math. Ann., 361:1-2 (2015), 1–50 | DOI | MR | Zbl
[151] J. Krieger, W. Schlag, Concentration compactness for critical wave maps, EMS Monogr. Math., Eur. Math. Soc., Zürich, 2012, vi+484 pp. | DOI | MR | Zbl
[152] M. Kunze, H. Spohn, “Adiabatic limit for the Maxwell–Lorentz equations”, Ann. Henri Poincaré, 1:4 (2000), 625–653 | DOI | MR | Zbl
[153] O. A. Ladyzhenskaya, “O printsipe predelnoi amplitudy”, UMN, 12:3(75) (1957), 161–164 | MR | Zbl
[154] G. L. Lamb, Jr., Elements of soliton theory, Pure Appl. Math., John Wiley Sons, Inc., New York, 1980, xiii+289 pp. | MR | Zbl
[155] H. Lamb, “On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium”, Proc. London Math. Soc., 32 (1900), 208–211 | DOI | MR | Zbl
[156] L. Landau, “On the problem of turbulence”, Dokl. AN SSSR, 44 (1944), 311–314 | MR | Zbl
[157] H. Langer, “Spectral functions of definitizable operators in Krein spaces”, Functional analysis (Dubrovnik, 1981), Lecture Notes in Math., 948, Springer, Berlin–New York, 1982, 1–46 | DOI | MR | Zbl
[158] P. D. Lax, C. S. Morawetz, R. S. Phillips, “Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle”, Comm. Pure Appl. Math., 16:4 (1963), 477–486 | DOI | MR | Zbl
[159] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996, xvi+248 pp. | MR | Zbl
[160] L. Lewin, Advanced theory of waveguides, Iliffe and Sons, Ltd., London, 1951, 192 pp.
[161] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl
[162] E. Long, D. Stuart, “Effective dynamics for solitons in the nonlinear Klein–Gordon–Maxwell system and the Lorentz force law”, Rev. Math. Phys., 21:4 (2009), 459–510 | DOI | MR | Zbl
[163] L. Lusternik, L. Schnirelmann, Méthodes topologiques dans les problèmes variationnels, Actualités Sci. Indust., 188, Hermann, Paris, 1934, 51 pp. | Zbl | Zbl
[164] L. Lyusternik, L. Shnirelman, “Topologicheskie metody v variatsionnykh zadachakh i ikh prilozheniya k differentsialnoi geometrii poverkhnostei”, UMN, 2:1(17) (1947), 166–217 | MR
[165] B. Marshall, W. Strauss, S. Wainger, “$L^{p}-L^{q}$ estimates for the Klein–Gordon equation”, J. Math. Pures Appl. (9), 59:4 (1980), 417–440 | MR | Zbl
[166] Y. Martel, “Asymptotic $N$-soliton-like solutions of the subcritical and critical generalized Korteweg–de Vries equations”, Amer. J. Math., 127:5 (2005), 1103–1140 | DOI | MR | Zbl
[167] Y. Martel, F. Merle, “Asymptotic stability of solitons of the subcritical gKdV equations revisited”, Nonlinearity, 18:1 (2005), 55–80 | DOI | MR | Zbl
[168] Y. Martel, F. Merle, T.-P. Tsai, “Stability and asymptotic stability in the energy space of the sum of $N$ solitons for subcritical gKdV equations”, Comm. Math. Phys., 231:2 (2002), 347–373 | DOI | MR | Zbl
[169] M. Merkli, I. M. Sigal, “A time-dependent theory of quantum resonances”, Comm. Math. Phys., 201:3 (1999), 549–576 | DOI | MR | Zbl
[170] J. R. Miller, M. I. Weinstein, “Asymptotic stability of solitary waves for the regularized long-wave equation”, Comm. Pure Appl. Math., 49:4 (1996), 399–441 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[171] C. S. Morawetz, “The limiting amplitude principle”, Comm. Pure Appl. Math., 15:3 (1962), 349–361 | DOI | MR | Zbl
[172] C. S. Morawetz, “Time decay for the nonlinear Klein–Gordon equations”, Proc. Roy. Soc. London Ser. A, 306 (1968), 291–296 | DOI | MR | Zbl
[173] C. S. Morawetz, W. A. Strauss, “Decay and scattering of solutions of a nonlinear relativistic wave equation”, Comm. Pure Appl. Math., 25:1 (1972), 1–31 | DOI | MR | Zbl
[174] K. Nakanishi, W. Schlag, Invariant manifolds and dispersive Hamiltonian evolution equations, Zur. Lect. Adv. Math., Eur. Math. Soc., Zürich, 2011, vi+253 pp. | DOI | MR | Zbl
[175] Y. Ne'eman, “Unified interactions in the unitary gauge theory”, Nuclear Phys., 30 (1962), 347–349 | DOI | MR
[176] D. Noja, A. Posilicano, “Wave equations with concentrated nonlinearities”, J. Phys. A, 38:22 (2005), 5011–5022 | DOI | MR | Zbl
[177] R. L. Pego, M. I. Weinstein, “Asymptotic stability of solitary waves”, Comm. Math. Phys., 164:2 (1994), 305–349 | DOI | MR | Zbl
[178] G. Perelman, “Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations”, Comm. Partial Differential Equations, 29:7-8 (2004), 1051–1095 | DOI | MR | Zbl
[179] C.-A. Pillet, C. E. Wayne, “Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations”, J. Differential Equations, 141:2 (1997), 310–326 | DOI | MR | Zbl
[180] M. Reed, B. Simon, Methods of modern mathematical physics, v. III, Scattering theory, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1979, xv+463 pp. | MR | MR | Zbl | Zbl
[181] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1978, xv+396 pp. | MR | MR | Zbl | Zbl
[182] I. Rodnianski, W. Schlag, “Time decay for solutions of Schrödinger equations with rough and time-dependent potentials”, Invent. Math., 155:3 (2004), 451–513 | DOI | MR | Zbl
[183] I. Rodnianski, W. Schlag, A. Soffer, Asymptotic stability of $N$-soliton states of NLS, 2003, 70 pp., arXiv: math/0309114
[184] I. Rodnianski, W. Schlag, A. Soffer, “Dispersive analysis of charge transfer models”, Comm. Pure Appl. Math., 58:2 (2005), 149–216 | DOI | MR | Zbl
[185] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., 1973, xiii+397 pp. | MR | MR | Zbl
[186] E. Schrödinger, “Quantisierung als Eigenwertproblem. I”, Ann. Phys., 79(384):4 (1926), 361–376 ; “II”, 79(384):6 (1926), 489–527 ; “III”, 80(385):13 (1926), 437–490 ; “IV”, 81(386):18 (1926), 109–139 | DOI | DOI | DOI | DOI | Zbl | Zbl | Zbl | Zbl
[187] I. Segal, “Quantization and dispersion for nonlinear relativistic equations”, Mathematical theory of elementary particles (Dedham, MA, 1965), M.I.T. Press, Cambridge, MA, 1966, 79–108 | MR
[188] I. Segal, “Dispersion for non-linear relativistic equations. II”, Ann. Sci. École Norm. Sup. (4), 1:4 (1968), 459–497 | DOI | MR | Zbl
[189] I. M. Sigal, “Non-linear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions”, Comm. Math. Phys., 153:2 (1993), 297–320 | DOI | MR | Zbl
[190] A. Soffer, “Soliton dynamics and scattering”, International congress of mathematicians, v. III, Eur. Math. Soc., Zürich, 2006, 459–471 | MR | Zbl
[191] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys., 133:1 (1990), 119–146 | DOI | MR | Zbl
[192] A. Soffer, M. I. Weinstein, “Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data”, J. Differential Equations, 98:2 (1992), 376–390 | DOI | MR | Zbl
[193] A. Soffer, M. I. Weinstein, “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math., 136:1 (1999), 9–74 | DOI | MR | Zbl
[194] A. Soffer, M. I. Weinstein, “Selection of the ground state for nonlinear Schrödinger equations”, Rev. Math. Phys., 16:8 (2004), 977–1071 | DOI | MR | Zbl
[195] H. Spohn, Dynamics of charged particles and their radiation field, Cambridge Univ. Press, Cambridge, 2004, xvi+360 pp. | DOI | MR | Zbl
[196] W. A. Strauss, “Decay and asymptotics for $\square u=F(u)$”, J. Funct. Anal., 2:4 (1968), 409–457 | DOI | MR | Zbl
[197] W. A. Strauss, “Existence of solitary waves in higher dimensions”, Comm. Math. Phys., 55:2 (1977), 149–162 | DOI | MR | Zbl
[198] W. A. Strauss, “Nonlinear scattering theory at low energy”, J. Funct. Anal., 41:1 (1981), 110–133 | DOI | MR | Zbl
[199] W. A. Strauss, “Nonlinear scattering theory at low energy: sequel”, J. Funct. Anal., 43:3 (1981), 281–293 | DOI | MR | Zbl
[200] D. Stuart, “Existence and Newtonian limit of nonlinear bound states in the Einstein–Dirac system”, J. Math. Phys., 51:3 (2010), 032501, 13 pp. | DOI | MR | Zbl
[201] D. Tataru, “Local decay of waves on asymptotically flat stationary space-times”, Amer. J. Math., 135:2 (2013), 361–401 | DOI | MR | Zbl
[202] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, 2nd ed., Springer-Verlag, New York, 1997, xxii+648 pp. | DOI | MR | Zbl
[203] E. C. Titchmarsh, “The zeros of certain integral functions”, Proc. London Math. Soc. (2), 25:1 (1926), 283–302 | DOI | MR | Zbl
[204] D. Treschev, “Oscillator and thermostat”, Discrete Contin. Dyn. Syst., 28:4 (2010), 1693–1712 | DOI | MR | Zbl
[205] T.-P. Tsai, “Asymptotic dynamics of nonlinear Schrödinger equations with many bound states”, J. Differential Equations, 192:1 (2003), 225–282 | DOI | MR | Zbl
[206] T.-P. Tsai, H.-T. Yau, “Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data”, Adv. Theor. Math. Phys., 6:1 (2002), 107–139 | DOI | MR | Zbl
[207] T.-P. Tsai, H.-T. Yau, “Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions”, Comm. Pure Appl. Math., 55:2 (2002), 153–216 | DOI | MR | Zbl
[208] M. I. Weinstein, “Modulational stability of ground states of nonlinear Schrödinger equations”, SIAM J. Math. Anal., 16:3 (1985), 472–491 | DOI | MR | Zbl
[209] D. R. Yafaev, “On a zero-range interaction of a quantum particle with the vacuum”, J. Phys. A, 25:4 (1992), 963–978 | DOI | MR | Zbl
[210] D. R. Yafaev, “A point interaction for the discrete Schrödinger operator and generalized Chebyshev polynomials”, J. Math. Phys., 58:6 (2017), 063511, 24 pp. | DOI | MR | Zbl
[211] K. Yajima, “Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue”, Comm. Math. Phys., 259:2 (2005), 475–509 | DOI | MR | Zbl
[212] Ya. B. Zel'dovich, “Scattering by a singular potential in perturbation theory and in the momentum representation”, Soviet Physics. JETP, 11:3 (1960), 594–597 | MR