Attractors of equations of non-Newtonian fluid dynamics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 5, pp. 845-913 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This survey describes a version of the trajectory-attractor\linebreak[4] method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-\linebreak[4]attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura–Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier–Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier–Stokes system. Bibliography: 34 titles.
Keywords: trajectory spaces, trajectory and global attractors of autonomous systems, uniform attractors of non-autonomous systems.
@article{RM_2014_69_5_a1,
     author = {V. G. Zvyagin and S. K. Kondrat'ev},
     title = {Attractors of equations of {non-Newtonian} fluid dynamics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {845--913},
     year = {2014},
     volume = {69},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2014_69_5_a1/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - S. K. Kondrat'ev
TI  - Attractors of equations of non-Newtonian fluid dynamics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 845
EP  - 913
VL  - 69
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2014_69_5_a1/
LA  - en
ID  - RM_2014_69_5_a1
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A S. K. Kondrat'ev
%T Attractors of equations of non-Newtonian fluid dynamics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 845-913
%V 69
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2014_69_5_a1/
%G en
%F RM_2014_69_5_a1
V. G. Zvyagin; S. K. Kondrat'ev. Attractors of equations of non-Newtonian fluid dynamics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 5, pp. 845-913. http://geodesic.mathdoc.fr/item/RM_2014_69_5_a1/

[1] O. A. Ladyzhenskaya, “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave–Stoksa”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 6, Zap. nauch. sem. LOMI, 27, Izd-vo «Nauka», Leningr. otd., L., 1972, 91–115 | MR | Zbl

[2] O. A. Ladyzhenskaya, “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6(258) (1987), 25–60 | MR | Zbl

[3] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1309–1314 | MR | Zbl

[4] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl

[5] G. Sell, “Global attractors for the three-dimensional Navier–Stokes equations”, J. Dynam. Differential Equations, 8:1 (1996), 1–33 | DOI | MR | Zbl

[6] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp. | MR | Zbl

[7] M. I. Vishik, V. V. Chepyzhov, “Traektornye attraktory uravnenii matematicheskoi fiziki”, UMN, 66:4(400) (2011), 3–102 | DOI | MR | Zbl

[8] G. R. Sell, Y. You, Dynamics of evolutionary equations, Appl. Math. Sci., 143, Springer-Verlag, New York, 2002, xiv+670 pp. | DOI | MR | Zbl

[9] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989, 296 pp. ; A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992, x+532 pp. | MR | Zbl | MR | Zbl

[10] V. V. Chepyzhov, “O ravnomernykh attraktorakh dinamicheskikh protsessov i neavtonomnykh uravnenii matematicheskoi fiziki”, UMN, 68:2(410) (2013), 159–196 | DOI | MR | Zbl

[11] D. A. Vorotnikov, V. G. Zvyagin, “O traektornykh i globalnykh attraktorakh dlya uravnenii dvizheniya vyazkouprugoi sredy”, UMN, 61:2(368) (2006), 161–162 | DOI | MR | Zbl

[12] D. A. Vorotnikov, V. G. Zvyagin, “Uniform attractors for non-automous motion equations of viscoelastic medium”, J. Math. Anal. Appl., 325:1 (2007), 438–458 | DOI | MR | Zbl

[13] D. A. Vorotnikov, V. G. Zvyagin, “Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium”, J. Math. Fluid Mech., 10:1 (2008), 19–44 | DOI | MR | Zbl

[14] V. G. Zvyagin, D. A. Vorotnikov, Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, De Gruyter Ser. Nonlinear Anal. Appl., 12, Walter de Gruyter Co., Berlin, 2008, xii+230 pp. | DOI | MR | Zbl

[15] S. K. Kondratev, “Ob attraktorakh modeli dvizheniya slabo kontsentrirovannykh vodnykh rastvorov polimerov”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Matem., 2010, no. 1, 117–138

[16] V. G. Zvyagin, S. K. Kondratev, “Attraktory slabykh reshenii regulyarizovannoi sistemy uravnenii dvizheniya zhidkikh sred s pamyatyu”, Izv. vuzov. Matem., 2011, no. 8, 86–89 | MR | Zbl

[17] V. G. Zvyagin, D. A. Vorotnikov, “Approximating-topological methods in some problems of hydrodynamics”, J. Fixed Point Theory Appl., 3:1 (2008), 23–49 | DOI | MR | Zbl

[18] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988, xvi+500 pp. | DOI | MR | Zbl

[19] V. G. Zvyagin, V. T. Dmitrienko, Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki. Sistema Nave–Stoksa, Editorial URSS, M., 2004, 112 pp.

[20] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, 2-e izd., Nauka, M., 1970, 288 pp. ; O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Math. Appl., 2, 2nd English ed., rev. and enlarged, Gordon and Breach Science Publishers, New York–London–Paris, 1969, xviii+224 pp. | MR | Zbl | MR | Zbl

[21] A. V. Babin, M. I. Vishik, “Attraktory sistemy Nave–Stoksa i parabolicheskikh uravnenii i otsenka ikh razmernosti”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 14, Zap. nauch. sem. LOMI, 115, Izd-vo «Nauka», Leningr. otd., L., 1982, 3–15 ; A. V. Babin, M. I. Vishik, “Attractors of Navier–Stokes systems and of parabolic equations, and estimates for their dimensions”, J. Soviet Math., 28:5 (1985), 619–627 | MR | Zbl | DOI

[22] M. I. Vishik, V. V. Chepyzhov, “Traektornyi i globalnyi attraktory 3D sistemy Nave–Stoksa”, Matem. zametki, 71:2 (2002), 194–213 | DOI | MR | Zbl

[23] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp. ; A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000, xiv+305 pp. | Zbl | MR | Zbl

[24] M. Reiner, Reologiya, Fizmatgiz, M., 1965, 224 pp.; M. Reiner, “Rheology”, Handbuch der Physik, v. 6, Elastizität und Plastizität, ed. S. Flügge, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, 434–550 | DOI | MR | Zbl

[25] D. A. Vorotnikov, V. G. Zvyagin, “On the existence of weak solutions for the initial-boundary value problem in the Jeffreys model of motion of a viscoelastic medium”, Abstr. Appl. Anal., 2004:10 (2004), 815–829 | DOI | MR | Zbl

[26] V. A. Pavlovskii, “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, Dokl. AN SSSR, 200:4 (1971), 809–812

[27] V. B. Amfilokhiev, Ya. I. Voitkunskii, N. P. Mazaeva, Ya. S. Khodorkovskii, “Techeniya polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Tr. Leningr. korablestr. in-ta, 96, 1975, 3–9

[28] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND, M., 2012, 416 pp.

[29] V. G. Zvyagin, M. V. Turbin, “Issledovanie nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya zhidkostei Kelvina–Foigta”, Gidrodinamika, SMFN, 31, RUDN, M., 2009, 3–144 ; V. G. Zvyagin, M. V. Turbin, “The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids”, J. Math. Sci. (N. Y.), 168:2 (2010), 157–308 | MR | Zbl | DOI

[30] V. T. Dmitrienko, V. G. Zvyagin, “Konstruktsii operatora regulyarizatsii v modelyakh dvizheniya vyazkouprugikh sred”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Matem., 2004, no. 2, 148–153 | Zbl

[31] V. G. Zvyagin, V. T. Dmitrienko, “O slabykh resheniyakh nachalno-kraevoi zadachi dlya uravneniya dvizheniya vyazkouprugoi zhidkosti”, Dokl. RAN, 380:3 (2001), 308–311 | MR | Zbl

[32] V. G. Zvyagin, V. T. Dmitrienko, “O slabykh resheniyakh regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. uravneniya, 38:12 (2002), 1633–1645 | MR | Zbl

[33] V. G. Zvyagin, S. K. Kondratev, “Attraktory slabykh reshenii regulyarizovannoi sistemy uravnenii dvizheniya zhidkikh sred s pamyatyu”, Matem. sb., 203:11 (2012), 83–104 | DOI | MR | Zbl

[34] A. N. Carvalho, J. A. Langa, J. C. Robinson, Attractors for infinite-dimensional non-autonomous dynamical systems, Appl. Math. Sci., 182, Springer, New York, 2013, xxxvi+409 pp. | DOI | MR | Zbl