@article{RM_2014_69_5_a1,
author = {V. G. Zvyagin and S. K. Kondrat'ev},
title = {Attractors of equations of {non-Newtonian} fluid dynamics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {845--913},
year = {2014},
volume = {69},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2014_69_5_a1/}
}
TY - JOUR AU - V. G. Zvyagin AU - S. K. Kondrat'ev TI - Attractors of equations of non-Newtonian fluid dynamics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 845 EP - 913 VL - 69 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2014_69_5_a1/ LA - en ID - RM_2014_69_5_a1 ER -
V. G. Zvyagin; S. K. Kondrat'ev. Attractors of equations of non-Newtonian fluid dynamics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 69 (2014) no. 5, pp. 845-913. http://geodesic.mathdoc.fr/item/RM_2014_69_5_a1/
[1] O. A. Ladyzhenskaya, “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave–Stoksa”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 6, Zap. nauch. sem. LOMI, 27, Izd-vo «Nauka», Leningr. otd., L., 1972, 91–115 | MR | Zbl
[2] O. A. Ladyzhenskaya, “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6(258) (1987), 25–60 | MR | Zbl
[3] V. V. Chepyzhov, M. I. Vishik, “Trajectory attractors for evolution equations”, C. R. Acad. Sci. Paris Sér. I Math., 321:10 (1995), 1309–1314 | MR | Zbl
[4] V. V. Chepyzhov, M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl
[5] G. Sell, “Global attractors for the three-dimensional Navier–Stokes equations”, J. Dynam. Differential Equations, 8:1 (1996), 1–33 | DOI | MR | Zbl
[6] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002, xii+363 pp. | MR | Zbl
[7] M. I. Vishik, V. V. Chepyzhov, “Traektornye attraktory uravnenii matematicheskoi fiziki”, UMN, 66:4(400) (2011), 3–102 | DOI | MR | Zbl
[8] G. R. Sell, Y. You, Dynamics of evolutionary equations, Appl. Math. Sci., 143, Springer-Verlag, New York, 2002, xiv+670 pp. | DOI | MR | Zbl
[9] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989, 296 pp. ; A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland Publishing Co., Amsterdam, 1992, x+532 pp. | MR | Zbl | MR | Zbl
[10] V. V. Chepyzhov, “O ravnomernykh attraktorakh dinamicheskikh protsessov i neavtonomnykh uravnenii matematicheskoi fiziki”, UMN, 68:2(410) (2013), 159–196 | DOI | MR | Zbl
[11] D. A. Vorotnikov, V. G. Zvyagin, “O traektornykh i globalnykh attraktorakh dlya uravnenii dvizheniya vyazkouprugoi sredy”, UMN, 61:2(368) (2006), 161–162 | DOI | MR | Zbl
[12] D. A. Vorotnikov, V. G. Zvyagin, “Uniform attractors for non-automous motion equations of viscoelastic medium”, J. Math. Anal. Appl., 325:1 (2007), 438–458 | DOI | MR | Zbl
[13] D. A. Vorotnikov, V. G. Zvyagin, “Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium”, J. Math. Fluid Mech., 10:1 (2008), 19–44 | DOI | MR | Zbl
[14] V. G. Zvyagin, D. A. Vorotnikov, Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, De Gruyter Ser. Nonlinear Anal. Appl., 12, Walter de Gruyter Co., Berlin, 2008, xii+230 pp. | DOI | MR | Zbl
[15] S. K. Kondratev, “Ob attraktorakh modeli dvizheniya slabo kontsentrirovannykh vodnykh rastvorov polimerov”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Matem., 2010, no. 1, 117–138
[16] V. G. Zvyagin, S. K. Kondratev, “Attraktory slabykh reshenii regulyarizovannoi sistemy uravnenii dvizheniya zhidkikh sred s pamyatyu”, Izv. vuzov. Matem., 2011, no. 8, 86–89 | MR | Zbl
[17] V. G. Zvyagin, D. A. Vorotnikov, “Approximating-topological methods in some problems of hydrodynamics”, J. Fixed Point Theory Appl., 3:1 (2008), 23–49 | DOI | MR | Zbl
[18] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988, xvi+500 pp. | DOI | MR | Zbl
[19] V. G. Zvyagin, V. T. Dmitrienko, Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki. Sistema Nave–Stoksa, Editorial URSS, M., 2004, 112 pp.
[20] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, 2-e izd., Nauka, M., 1970, 288 pp. ; O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Math. Appl., 2, 2nd English ed., rev. and enlarged, Gordon and Breach Science Publishers, New York–London–Paris, 1969, xviii+224 pp. | MR | Zbl | MR | Zbl
[21] A. V. Babin, M. I. Vishik, “Attraktory sistemy Nave–Stoksa i parabolicheskikh uravnenii i otsenka ikh razmernosti”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 14, Zap. nauch. sem. LOMI, 115, Izd-vo «Nauka», Leningr. otd., L., 1982, 3–15 ; A. V. Babin, M. I. Vishik, “Attractors of Navier–Stokes systems and of parabolic equations, and estimates for their dimensions”, J. Soviet Math., 28:5 (1985), 619–627 | MR | Zbl | DOI
[22] M. I. Vishik, V. V. Chepyzhov, “Traektornyi i globalnyi attraktory 3D sistemy Nave–Stoksa”, Matem. zametki, 71:2 (2002), 194–213 | DOI | MR | Zbl
[23] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp. ; A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000, xiv+305 pp. | Zbl | MR | Zbl
[24] M. Reiner, Reologiya, Fizmatgiz, M., 1965, 224 pp.; M. Reiner, “Rheology”, Handbuch der Physik, v. 6, Elastizität und Plastizität, ed. S. Flügge, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, 434–550 | DOI | MR | Zbl
[25] D. A. Vorotnikov, V. G. Zvyagin, “On the existence of weak solutions for the initial-boundary value problem in the Jeffreys model of motion of a viscoelastic medium”, Abstr. Appl. Anal., 2004:10 (2004), 815–829 | DOI | MR | Zbl
[26] V. A. Pavlovskii, “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, Dokl. AN SSSR, 200:4 (1971), 809–812
[27] V. B. Amfilokhiev, Ya. I. Voitkunskii, N. P. Mazaeva, Ya. S. Khodorkovskii, “Techeniya polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Tr. Leningr. korablestr. in-ta, 96, 1975, 3–9
[28] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND, M., 2012, 416 pp.
[29] V. G. Zvyagin, M. V. Turbin, “Issledovanie nachalno-kraevykh zadach dlya matematicheskikh modelei dvizheniya zhidkostei Kelvina–Foigta”, Gidrodinamika, SMFN, 31, RUDN, M., 2009, 3–144 ; V. G. Zvyagin, M. V. Turbin, “The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids”, J. Math. Sci. (N. Y.), 168:2 (2010), 157–308 | MR | Zbl | DOI
[30] V. T. Dmitrienko, V. G. Zvyagin, “Konstruktsii operatora regulyarizatsii v modelyakh dvizheniya vyazkouprugikh sred”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Matem., 2004, no. 2, 148–153 | Zbl
[31] V. G. Zvyagin, V. T. Dmitrienko, “O slabykh resheniyakh nachalno-kraevoi zadachi dlya uravneniya dvizheniya vyazkouprugoi zhidkosti”, Dokl. RAN, 380:3 (2001), 308–311 | MR | Zbl
[32] V. G. Zvyagin, V. T. Dmitrienko, “O slabykh resheniyakh regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. uravneniya, 38:12 (2002), 1633–1645 | MR | Zbl
[33] V. G. Zvyagin, S. K. Kondratev, “Attraktory slabykh reshenii regulyarizovannoi sistemy uravnenii dvizheniya zhidkikh sred s pamyatyu”, Matem. sb., 203:11 (2012), 83–104 | DOI | MR | Zbl
[34] A. N. Carvalho, J. A. Langa, J. C. Robinson, Attractors for infinite-dimensional non-autonomous dynamical systems, Appl. Math. Sci., 182, Springer, New York, 2013, xxxvi+409 pp. | DOI | MR | Zbl