Generalization of Doob's optional sampling theorem for deformed submartingales
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 6, pp. 1139-1141

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_2013_68_6_a6,
     author = {I. V. Pavlov and O. V. Nazarko},
     title = {Generalization of {Doob's} optional sampling theorem for deformed submartingales},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1139--1141},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_6_a6/}
}
TY  - JOUR
AU  - I. V. Pavlov
AU  - O. V. Nazarko
TI  - Generalization of Doob's optional sampling theorem for deformed submartingales
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 1139
EP  - 1141
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_6_a6/
LA  - en
ID  - RM_2013_68_6_a6
ER  - 
%0 Journal Article
%A I. V. Pavlov
%A O. V. Nazarko
%T Generalization of Doob's optional sampling theorem for deformed submartingales
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 1139-1141
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2013_68_6_a6/
%G en
%F RM_2013_68_6_a6
I. V. Pavlov; O. V. Nazarko. Generalization of Doob's optional sampling theorem for deformed submartingales. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 6, pp. 1139-1141. http://geodesic.mathdoc.fr/item/RM_2013_68_6_a6/