Generalization of Doob's optional sampling theorem for deformed submartingales
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 6, pp. 1139-1141
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_2013_68_6_a6,
author = {I. V. Pavlov and O. V. Nazarko},
title = {Generalization of {Doob's} optional sampling theorem for deformed submartingales},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1139--1141},
publisher = {mathdoc},
volume = {68},
number = {6},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2013_68_6_a6/}
}
TY - JOUR AU - I. V. Pavlov AU - O. V. Nazarko TI - Generalization of Doob's optional sampling theorem for deformed submartingales JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 1139 EP - 1141 VL - 68 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2013_68_6_a6/ LA - en ID - RM_2013_68_6_a6 ER -
%0 Journal Article %A I. V. Pavlov %A O. V. Nazarko %T Generalization of Doob's optional sampling theorem for deformed submartingales %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 1139-1141 %V 68 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2013_68_6_a6/ %G en %F RM_2013_68_6_a6
I. V. Pavlov; O. V. Nazarko. Generalization of Doob's optional sampling theorem for deformed submartingales. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 6, pp. 1139-1141. http://geodesic.mathdoc.fr/item/RM_2013_68_6_a6/