Yang--Baxter equation, parameter permutations, and the elliptic beta integral
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 6, pp. 1027-1072
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper presents a construction of an infinite-dimensional solution of the Yang–Baxter equation of rank 1 which is represented as an integral operator with an elliptic hypergeometric kernel acting in the space of functions of two complex variables. This $\mathrm{R}$-operator intertwines the product of two standard $\mathrm{L}$-operators associated with the Sklyanin algebra, an elliptic deformation of the algebra $\operatorname{sl}(2)$. The solution is constructed from three basic operators $\mathrm{S}_1$, $\mathrm{S}_2$, and $\mathrm{S}_3$ generating the permutation group $\mathfrak{S}_4$ on four parameters. Validity of the key Coxeter relations (including a star-triangle relation) is based on the formula for computing an elliptic beta integral and the Bailey lemma associated with an elliptic Fourier transformation. The operators $\mathrm{S}_j$ are determined uniquely with the help of the elliptic modular double.
Bibliography: 37 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Yang–Baxter equation, Sklyanin algebra, elliptic beta integral.
Mots-clés : permutation group
                    
                  
                
                
                Mots-clés : permutation group
@article{RM_2013_68_6_a1,
     author = {S. \`E. Derkachev and V. P. Spiridonov},
     title = {Yang--Baxter equation, parameter permutations, and the elliptic beta integral},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1027--1072},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_6_a1/}
}
                      
                      
                    TY - JOUR AU - S. È. Derkachev AU - V. P. Spiridonov TI - Yang--Baxter equation, parameter permutations, and the elliptic beta integral JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 1027 EP - 1072 VL - 68 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2013_68_6_a1/ LA - en ID - RM_2013_68_6_a1 ER -
%0 Journal Article %A S. È. Derkachev %A V. P. Spiridonov %T Yang--Baxter equation, parameter permutations, and the elliptic beta integral %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 1027-1072 %V 68 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2013_68_6_a1/ %G en %F RM_2013_68_6_a1
S. È. Derkachev; V. P. Spiridonov. Yang--Baxter equation, parameter permutations, and the elliptic beta integral. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 6, pp. 1027-1072. http://geodesic.mathdoc.fr/item/RM_2013_68_6_a1/
