Yang--Baxter equation, parameter permutations, and the elliptic beta integral
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 6, pp. 1027-1072

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a construction of an infinite-dimensional solution of the Yang–Baxter equation of rank 1 which is represented as an integral operator with an elliptic hypergeometric kernel acting in the space of functions of two complex variables. This $\mathrm{R}$-operator intertwines the product of two standard $\mathrm{L}$-operators associated with the Sklyanin algebra, an elliptic deformation of the algebra $\operatorname{sl}(2)$. The solution is constructed from three basic operators $\mathrm{S}_1$$\mathrm{S}_2$, and $\mathrm{S}_3$ generating the permutation group $\mathfrak{S}_4$ on four parameters. Validity of the key Coxeter relations (including a star-triangle relation) is based on the formula for computing an elliptic beta integral and the Bailey lemma associated with an elliptic Fourier transformation. The operators $\mathrm{S}_j$ are determined uniquely with the help of the elliptic modular double. Bibliography: 37 titles.
Keywords: Yang–Baxter equation, Sklyanin algebra, elliptic beta integral.
Mots-clés : permutation group
@article{RM_2013_68_6_a1,
     author = {S. \`E. Derkachev and V. P. Spiridonov},
     title = {Yang--Baxter equation, parameter permutations, and the elliptic beta integral},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1027--1072},
     publisher = {mathdoc},
     volume = {68},
     number = {6},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_6_a1/}
}
TY  - JOUR
AU  - S. È. Derkachev
AU  - V. P. Spiridonov
TI  - Yang--Baxter equation, parameter permutations, and the elliptic beta integral
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 1027
EP  - 1072
VL  - 68
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_6_a1/
LA  - en
ID  - RM_2013_68_6_a1
ER  - 
%0 Journal Article
%A S. È. Derkachev
%A V. P. Spiridonov
%T Yang--Baxter equation, parameter permutations, and the elliptic beta integral
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 1027-1072
%V 68
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2013_68_6_a1/
%G en
%F RM_2013_68_6_a1
S. È. Derkachev; V. P. Spiridonov. Yang--Baxter equation, parameter permutations, and the elliptic beta integral. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 6, pp. 1027-1072. http://geodesic.mathdoc.fr/item/RM_2013_68_6_a1/