Mots-clés : exact solutions.
@article{RM_2013_68_5_a2,
author = {N. Kh. Ibragimov and E. D. Avdonina},
title = {Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {889--921},
year = {2013},
volume = {68},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2013_68_5_a2/}
}
TY - JOUR AU - N. Kh. Ibragimov AU - E. D. Avdonina TI - Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 889 EP - 921 VL - 68 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2013_68_5_a2/ LA - en ID - RM_2013_68_5_a2 ER -
%0 Journal Article %A N. Kh. Ibragimov %A E. D. Avdonina %T Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 889-921 %V 68 %N 5 %U http://geodesic.mathdoc.fr/item/RM_2013_68_5_a2/ %G en %F RM_2013_68_5_a2
N. Kh. Ibragimov; E. D. Avdonina. Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 5, pp. 889-921. http://geodesic.mathdoc.fr/item/RM_2013_68_5_a2/
[1] S. Lie, Gesammelte Abhandlungen, v. 1–6, B. G. Teubner, Leipzig, 1922–1937, xix+862, ix+988, xvi+789, xii+684, xii+776, xxiv+940 pp. | MR | MR | MR | MR | MR | MR | Zbl
[2] L. V. Ovsyannikov, Gruppovye svoistva differentsialnykh uravnenii, Izd-vo SO AN SSSR, Novosibirsk, 1962, 239 pp. | MR
[3] L. V. Ovsyannikov, Lektsii po teorii gruppovykh svoistv differentsialnykh uravnenii, Izd-vo Novosibirskogo gos. un-ta, Novosibirsk, 1966, 131 pp. | MR
[4] N. H. Ibragimov, “A new conservation theorem”, J. Math. Anal. Appl., 333:1 (2007), 311–328 | DOI | MR | Zbl
[5] N. H. Ibragimov, “Nonlinear self-adjointness in constructing conservation laws”, Archives of ALGA, 7/8 (2010–2011), 1–99; arXiv: 1109.1728v1
[6] N. H. Ibragimov, “Nonlinear self-adjointness and conservation laws”, J. Phys. A, 44:43 (2011), 432002, 8 pp. | DOI | Zbl
[7] N. H. Ibragimov, “Method of conservation laws for constructing solutions to systems of PDEs”, Discontinuity, Nonlinearity, and Complexity, 1:4 (2012), 353–365 | DOI
[8] N. H. Ibragimov, E. D. Avdonina, “Heat conduction in anisotropic media”, Discontinuity, Nonlinearity and Complexity, 1:3 (2012), 237–251 | DOI
[9] N. Kh. Ibragimov, E. D. Avdonina, “Postroenie tochnykh reshenii uravnenii anizotropnoi teploprovodnosti s pomoschyu zakonov sokhraneniya”, Materialy V Rossiiskoi konferentsii s mezhdunarodnym uchastiem “Mnogofaznye sistemy: teoriya i prilozheniya” (Ufa, 2012), Chast 1, Tr. In-ta mekh. UNTs RAN, 9, 2012, 88–90
[10] E. D. Avdonina, N. H. Ibragimov, R. Khamitova, “Exact solutions of gasdynamic equations obtained by the method of conservation laws”, Commun. Nonlinear Sci. Numer. Simul., 18:9 (2013), 2359–2366 | DOI | MR
[11] E. D. Avdonina, N. H. Ibragimov, “Conservation laws and exact solutions for nonlinear diffusion in anisotropic media”, Commun. Nonlinear Sci. Numer. Simul., 18:10 (2013), 2595–2603 | DOI
[12] N. H. Ibragimov, Transformation groups applied to mathematical physics, Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, 1985, xv+394 pp. | MR | MR | Zbl | Zbl
[13] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1982, xvi+416 pp. | MR | MR | Zbl | Zbl
[14] P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986, xxvi+497 pp. | DOI | MR | MR | Zbl | Zbl
[15] R. Courant, D. Hilbert, Methoden der mathematischen Physik, v. I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 12, Springer, Berlin, 1924, xiii+450 pp. | MR | MR | Zbl
[16] N. H. Ibragimov, Elementary Lie group analysis and ordinary differential equations, Wiley Ser. Math. Methods Pract., 4, John Wiley Sons, Ltd., Chichester, 1999, xviii+347 pp. | MR | Zbl
[17] B. B. Kadomtsev, V. I. Petviashvili, “On the stability of solitary waves in weakly dispersing media”, Soviet Phys. Dokl., 15 (1970), 539–541 | Zbl
[18] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contemp. Soviet Math., Consultants Bureau [Plenum], New York, 1984, xi+276 pp. | MR | MR | Zbl | Zbl
[19] T. Schäfer, C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media”, Phys. D, 196:1-2 (2004), 90–105 | DOI | MR | Zbl
[20] A. Sakovich, S. Sakovich, “The short pulse equation is integrable”, J. Phys. Soc. Japan, 74:1 (2005), 239–241 | DOI | Zbl
[21] A. Sakovich, S. Sakovich, “Solitary wave solutions of the short pulse equation”, J. Phys. A, 39:22 (2006), L361–L367 | DOI | MR | Zbl
[22] I. Sh. Akhatov, R. K. Gazizov, N. Kh. Ibragimov, “Nonlocal symmetries. Heuristic approach”, J. Soviet Math., 55:1 (1991), 1401–1450 | DOI | MR | Zbl
[23] N. H. Ibragimov (ed.), CRC handbook of Lie group analysis of differential equations, v. 3, New trends in theoretical developments and computational methods, CRC Press Inc., Boca Raton, FL, 1996, xvi+536 pp. | MR | Zbl