Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 5, pp. 889-921 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of nonlinear self-adjointness, which was recently developed by the first author, gives a generalization of Noether's theorem. This new method significantly extends approaches to constructing conservation laws associated with symmetries, since it does not require the existence of a Lagrangian. In particular, it can be applied to any linear equations and any nonlinear equations that possess at least one local conservation law. The present paper provides a brief survey of results on conservation laws which have been obtained by this method and published mostly in recent preprints of the authors, along with a method for constructing exact solutions of systems of partial differential equations with the use of conservation laws. In most cases the solutions obtained by the method of conservation laws cannot be found as invariant or partially invariant solutions. Bibliography: 23 titles.
Keywords: differential equations, nonlinear self-adjointness, conservation laws
Mots-clés : exact solutions.
@article{RM_2013_68_5_a2,
     author = {N. Kh. Ibragimov and E. D. Avdonina},
     title = {Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {889--921},
     year = {2013},
     volume = {68},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_5_a2/}
}
TY  - JOUR
AU  - N. Kh. Ibragimov
AU  - E. D. Avdonina
TI  - Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 889
EP  - 921
VL  - 68
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_5_a2/
LA  - en
ID  - RM_2013_68_5_a2
ER  - 
%0 Journal Article
%A N. Kh. Ibragimov
%A E. D. Avdonina
%T Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 889-921
%V 68
%N 5
%U http://geodesic.mathdoc.fr/item/RM_2013_68_5_a2/
%G en
%F RM_2013_68_5_a2
N. Kh. Ibragimov; E. D. Avdonina. Nonlinear self-adjointness, conservation laws, and the construction of solutions of partial differential equations using conservation laws. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 5, pp. 889-921. http://geodesic.mathdoc.fr/item/RM_2013_68_5_a2/

[1] S. Lie, Gesammelte Abhandlungen, v. 1–6, B. G. Teubner, Leipzig, 1922–1937, xix+862, ix+988, xvi+789, xii+684, xii+776, xxiv+940 pp. | MR | MR | MR | MR | MR | MR | Zbl

[2] L. V. Ovsyannikov, Gruppovye svoistva differentsialnykh uravnenii, Izd-vo SO AN SSSR, Novosibirsk, 1962, 239 pp. | MR

[3] L. V. Ovsyannikov, Lektsii po teorii gruppovykh svoistv differentsialnykh uravnenii, Izd-vo Novosibirskogo gos. un-ta, Novosibirsk, 1966, 131 pp. | MR

[4] N. H. Ibragimov, “A new conservation theorem”, J. Math. Anal. Appl., 333:1 (2007), 311–328 | DOI | MR | Zbl

[5] N. H. Ibragimov, “Nonlinear self-adjointness in constructing conservation laws”, Archives of ALGA, 7/8 (2010–2011), 1–99; arXiv: 1109.1728v1

[6] N. H. Ibragimov, “Nonlinear self-adjointness and conservation laws”, J. Phys. A, 44:43 (2011), 432002, 8 pp. | DOI | Zbl

[7] N. H. Ibragimov, “Method of conservation laws for constructing solutions to systems of PDEs”, Discontinuity, Nonlinearity, and Complexity, 1:4 (2012), 353–365 | DOI

[8] N. H. Ibragimov, E. D. Avdonina, “Heat conduction in anisotropic media”, Discontinuity, Nonlinearity and Complexity, 1:3 (2012), 237–251 | DOI

[9] N. Kh. Ibragimov, E. D. Avdonina, “Postroenie tochnykh reshenii uravnenii anizotropnoi teploprovodnosti s pomoschyu zakonov sokhraneniya”, Materialy V Rossiiskoi konferentsii s mezhdunarodnym uchastiem “Mnogofaznye sistemy: teoriya i prilozheniya” (Ufa, 2012), Chast 1, Tr. In-ta mekh. UNTs RAN, 9, 2012, 88–90

[10] E. D. Avdonina, N. H. Ibragimov, R. Khamitova, “Exact solutions of gasdynamic equations obtained by the method of conservation laws”, Commun. Nonlinear Sci. Numer. Simul., 18:9 (2013), 2359–2366 | DOI | MR

[11] E. D. Avdonina, N. H. Ibragimov, “Conservation laws and exact solutions for nonlinear diffusion in anisotropic media”, Commun. Nonlinear Sci. Numer. Simul., 18:10 (2013), 2595–2603 | DOI

[12] N. H. Ibragimov, Transformation groups applied to mathematical physics, Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, 1985, xv+394 pp. | MR | MR | Zbl | Zbl

[13] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1982, xvi+416 pp. | MR | MR | Zbl | Zbl

[14] P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986, xxvi+497 pp. | DOI | MR | MR | Zbl | Zbl

[15] R. Courant, D. Hilbert, Methoden der mathematischen Physik, v. I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 12, Springer, Berlin, 1924, xiii+450 pp. | MR | MR | Zbl

[16] N. H. Ibragimov, Elementary Lie group analysis and ordinary differential equations, Wiley Ser. Math. Methods Pract., 4, John Wiley Sons, Ltd., Chichester, 1999, xviii+347 pp. | MR | Zbl

[17] B. B. Kadomtsev, V. I. Petviashvili, “On the stability of solitary waves in weakly dispersing media”, Soviet Phys. Dokl., 15 (1970), 539–541 | Zbl

[18] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons. The inverse scattering method, Contemp. Soviet Math., Consultants Bureau [Plenum], New York, 1984, xi+276 pp. | MR | MR | Zbl | Zbl

[19] T. Schäfer, C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media”, Phys. D, 196:1-2 (2004), 90–105 | DOI | MR | Zbl

[20] A. Sakovich, S. Sakovich, “The short pulse equation is integrable”, J. Phys. Soc. Japan, 74:1 (2005), 239–241 | DOI | Zbl

[21] A. Sakovich, S. Sakovich, “Solitary wave solutions of the short pulse equation”, J. Phys. A, 39:22 (2006), L361–L367 | DOI | MR | Zbl

[22] I. Sh. Akhatov, R. K. Gazizov, N. Kh. Ibragimov, “Nonlocal symmetries. Heuristic approach”, J. Soviet Math., 55:1 (1991), 1401–1450 | DOI | MR | Zbl

[23] N. H. Ibragimov (ed.), CRC handbook of Lie group analysis of differential equations, v. 3, New trends in theoretical developments and computational methods, CRC Press Inc., Boca Raton, FL, 1996, xvi+536 pp. | MR | Zbl