Mots-clés : Darboux and Laplace transformations
@article{RM_2013_68_5_a1,
author = {P. G. Grinevich and S. P. Novikov},
title = {Discrete $SL_n$-connections and self-adjoint difference operators on two-dimensional manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {861--887},
year = {2013},
volume = {68},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2013_68_5_a1/}
}
TY - JOUR AU - P. G. Grinevich AU - S. P. Novikov TI - Discrete $SL_n$-connections and self-adjoint difference operators on two-dimensional manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 861 EP - 887 VL - 68 IS - 5 UR - http://geodesic.mathdoc.fr/item/RM_2013_68_5_a1/ LA - en ID - RM_2013_68_5_a1 ER -
%0 Journal Article %A P. G. Grinevich %A S. P. Novikov %T Discrete $SL_n$-connections and self-adjoint difference operators on two-dimensional manifolds %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 861-887 %V 68 %N 5 %U http://geodesic.mathdoc.fr/item/RM_2013_68_5_a1/ %G en %F RM_2013_68_5_a1
P. G. Grinevich; S. P. Novikov. Discrete $SL_n$-connections and self-adjoint difference operators on two-dimensional manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 5, pp. 861-887. http://geodesic.mathdoc.fr/item/RM_2013_68_5_a1/
[1] S. P. Novikov, “Discrete connections and difference linear equations”, Proc. Steklov Inst. Math., 247 (2004), 168–183, arXiv: math-ph/0303035 | MR | Zbl
[2] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces”, Soviet Math. Dokl., 17 (1977), 947–951 | Zbl
[3] I. A. Dynnikov, S. P. Novikov, “Geometry of the triangle equation on two-manifolds”, Mosc. Math. J., 3:2 (2003), 419–438 | MR | Zbl
[4] S. P. Novikov, New discretization of complex analysis: the Euclidean and hyperbolic planes, arXiv: 0809.2963
[5] S. P. Novikov, “Four lectures on discrete systems”, Symmetries and integrability of difference equations (Montreal, QC, June 8–21, 2008), London Math. Soc. Lecture Note Ser., 381, Cambridge Univ. Press, Cambridge, 2011, 191–206 | Zbl
[6] P. G. Grinevich, R. G. Novikov, “The Cauchy kernel for the Novikov–Dynnikov DN-discrete complex analysis in triangular lattices”, Russian Math. Surveys, 62:4 (2007), 799–801 | DOI | DOI | MR | Zbl
[7] S. P. Novikov, “Algebraic properties of two-dimensional difference operators”, Russian Math. Surveys, 52:1 (1997), 226–227 | DOI | DOI | MR | Zbl
[8] S. P. Novikov, I. A. Dynnikov, “Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1057–1116 | DOI | DOI | MR | Zbl
[9] S. P. Novikov, A. Veselov, “Exactly solvable two-dimensional Schrödinger operators and Laplace transformations”, Appendix 1 (by S. P. Novikov): Difference analogs of the Laplace transformations, Appendix 2 (by S. P. Novikov, I. A. Taĭmanov): Difference analogs of harmonic oscillator, Solitons, geometry, and topology: on the crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 109–132 | MR | Zbl
[10] J. Weiss, “Periodic fixed points of Bäcklund transformations and the Korteweg–de Vries equation”, J. Math Phys., 27:11 (1986), 2647–2656 | DOI | MR | Zbl
[11] A. B. Shabat, “On the theory of Laplace–Darboux transformations”, Theoret. and Math. Phys., 103:1 (1995), 482–485 | DOI | MR | Zbl
[12] A. P. Veselov, A. B. Shabat, “Dressing chains and the spectral theory of the Schrödinger operator”, Funct. Anal. Appl., 27:2 (1993), 81–96 | DOI | MR | Zbl
[13] V. Spiridonov, L. Vinet, A. Zhedanov, “Difference Schrödinger operators with linear and exponential discrete spectra”, Lett. Math. Phys., 29:1 (1993), 63–73 | DOI | MR | Zbl
[14] A. Doliwa, “Geometric discretization of the Toda system”, Phys. Lett. A, 234:3 (1997), 187–192 | DOI | MR | Zbl
[15] A. Doliwa, “Lattice geometry of the Hirota equation”, SIDE III – Symmetries and integrability of difference equations (Sabaudia, Italy, May 16–22, 1998), CRM Proc. Lecture Notes, 25, Amer. Math. Soc., Providence, RI, 2000, 93–100 | MR | Zbl
[16] I. M. Krichever, S. P. Novikov, “Trivalent graphs and solitons”, Russian Math. Surveys, 54:6 (1999), 1248–1249 | DOI | DOI | MR | Zbl
[17] T. Miwa, “On Hirota's difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 58:1 (1982), 9–12 | DOI | MR | Zbl
[18] A. E. Kennelly, “The equivalence of triangles and three-pointed stars in conducting networks”, Electrical World and Engineer, 34:12 (1899), 413–414
[19] I. A. Dynnikov, S. P. Novikov, “Laplace transforms and simplicial connections”, Russian Math. Surveys, 52:6 (1997), 1294–1295 | DOI | DOI | MR | Zbl
[20] R. M. Kashaev, “On discrete three-dimensional equations associated with the local Yang–Baxter relation”, Lett. Math. Phys., 38:4 (1996), 389–397 | DOI | MR | Zbl
[21] I. G. Korepanov, “A dynamical system connected with an inhomogeneous 6-vertex model”, Differentsialnaya geometriya, gruppy Li i mekhanika. 14, Zap. nauch. sem. POMI, 215, POMI, SPb., 1994, 178–196 ; J. Math. Sci. (New York), 85:1 (1997), 1671–1683 | MR | Zbl | DOI
[22] S. P. Novikov, “Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involutions from the viewpoint of hamiltonian formalism. Applications to differential topology and the theory of characteristic classes. I”, Math. USSR-Izv., 4:2 (1970), 257–292 | DOI | MR | Zbl
[23] S. P. Novikov, “Algebraic construction and properties of hermitian analogs of $K$-theory over rings with involutions from the viewpoint of hamiltonian formalism. Applications to differential topology and the theory of characteristic classes. II”, Math. USSR-Izv., 4:3 (1970), 479–505 | DOI | MR | Zbl
[24] S. P. Novikov, “The Schödinger operator on graphs and topology”, Russian Math. Surveys, 52:6 (1997), 1320–1321 | DOI | DOI | MR | Zbl
[25] S. P. Novikov, “Discrete Schrödinger operators and topology”, Asian J. Math., 2:4 (1998), 921–933 | DOI | MR | Zbl
[26] S. P. Novikov, “Schrödinger operators on graphs and symplectic geometry”, The Arnoldfest. Proceedings of a conference in honour of V. I. Arnold for his 60th birthday (Toronto, ON, June 15–21, 1997), Fields Inst. Commun., 24, Amer. Math. Soc., Providence, RI, 1999, 397–413 | MR | Zbl
[27] S. P. Novikov, A. S. Shvarts, “Discrete Lagrangian systems on graphs. Symplectic-topological properties”, Russian Math. Surveys, 54:1 (1999), 258–259 | DOI | DOI | MR | Zbl
[28] V. Kostrykin, R. Schrader, “Kirchhoff's rule for quantum wires”, J. Phys. A, 32:4 (1999), 595–630 | DOI | MR | Zbl
[29] V. Kostrykin, R. Schrader, “Kirchhoff's rule for quantum wires. II. The inverse problem with possible applications to quantum computers”, Fortschr. Phys., 48:8 (2000), 703–716 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl