Geometric structures on moment-angle manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 3, pp. 503-568

Voir la notice de l'article provenant de la source Math-Net.Ru

A moment-angle complex $\mathscr{Z}_{\mathscr{K}}$ is a cell complex with a torus action constructed from a finite simplicial complex ${\mathscr{K}}$. When this construction is applied to a triangulated sphere ${\mathscr{K}}$ or, in particular, to the boundary of a simplicial polytope, the result is a manifold. Moment-angle manifolds and complexes are central objects in toric topology, and currently are gaining much interest in homotopy theory and complex and symplectic geometry. The geometric aspects of the theory of moment-angle complexes are the main theme of this survey. Constructions of non-Kähler complex-analytic structures on moment-angle manifolds corresponding to polytopes and complete simplicial fans are reviewed, and invariants of these structures such as the Hodge numbers and Dolbeault cohomology rings are described. Symplectic and Lagrangian aspects of the theory are also of considerable interest. Moment-angle manifolds appear as level sets for quadratic Hamiltonians of torus actions, and can be used to construct new families of Hamiltonian-minimal Lagrangian submanifolds in a complex space, complex projective space, or toric varieties. Bibliography: 59 titles.
Keywords: moment-angle manifold, Hermitian quadrics, simplicial fans, simple polytopes, non-Kähler complex manifolds, Hamiltonian-minimal Lagrangian submanifolds.
@article{RM_2013_68_3_a3,
     author = {T. E. Panov},
     title = {Geometric structures on moment-angle manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {503--568},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2013_68_3_a3/}
}
TY  - JOUR
AU  - T. E. Panov
TI  - Geometric structures on moment-angle manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 503
EP  - 568
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2013_68_3_a3/
LA  - en
ID  - RM_2013_68_3_a3
ER  - 
%0 Journal Article
%A T. E. Panov
%T Geometric structures on moment-angle manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 503-568
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2013_68_3_a3/
%G en
%F RM_2013_68_3_a3
T. E. Panov. Geometric structures on moment-angle manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 68 (2013) no. 3, pp. 503-568. http://geodesic.mathdoc.fr/item/RM_2013_68_3_a3/