Mots-clés : adeles, direct images.
@article{RM_2012_67_3_a2,
author = {A. N. Parshin},
title = {Questions and remarks to the {Langlands} programme},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {509--539},
year = {2012},
volume = {67},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2012_67_3_a2/}
}
A. N. Parshin. Questions and remarks to the Langlands programme. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 67 (2012) no. 3, pp. 509-539. http://geodesic.mathdoc.fr/item/RM_2012_67_3_a2/
[1] K. Acquista, The Weil group of a hyper-class formation, 2005, arXiv: math/0508078
[2] E. Artin, J. Tate, Class field theory, Harvard Univ. Press, 1961 | MR | Zbl
[3] J. Arthur, L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Ann. of Math. Stud., 120, Princeton Univ. Press, Princeton, NY, 1989, xiv+230 pp. | MR | Zbl
[4] I. N. Bernshtein, A. V. Zelevinskii, “Representations of the group $GL(n,F)$ where $F$ is a non-Archimedean local field”, Russian Math. Surveys, 31:3 (1976), 1–68 | DOI | MR | Zbl | Zbl
[5] L. Breen, “Tannakian categories”, Motives (University of Washington, Seattle, WA, USA, July 20–August 2, 1991), Proc. Symp. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, 337–376 | MR | Zbl
[6] D. Bump, Automorphic forms and representations, Cambridge Stud. Adv. Math., 55, Cambridge Univ. Press, Cambridge, 1997, xiv+574 pp. | MR | Zbl
[7] P. Cartier, “Representations of $p$-adic groups: a survey”, Automorphic forms, representations and $L$-functions (Oregon State Univ., Corvallis, Ore., 1977), Proc. Sympos. Pure Math., 33, Part 1, Amer. Math. Soc., Providence, R.I., 1979, 111–155 | MR | Zbl
[8] B. Casselman, “The $L$-group”, Class field theory – its centenary and prospect (Tokyo, 1998), Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001, 217–258 | MR | Zbl
[9] V. G. Drinfel'd, “Langlands'conjecture for $\mathrm{GL}(2)$ over functional fields”, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 565–574 | MR | Zbl
[10] V. G. Drinfeld, “Two-dimensional $l$-adic representations of the fundamental group of a curve over a finite field and automorphic forms on $\mathrm{GL}(2)$”, Amer. J. Math., 105:1 (1983), 85–114 | DOI | MR | Zbl
[11] T. Fimmel, A. N. Parshin, Introduction to the higher adelic theory, Preprint, 1999
[12] D. Flath, “Decomposition of representations into tensor products”, Automorphic forms, representations and $L$-functions (Oregon State Univ., Corvallis, OR, 1977), Proc. Sympos. Pure Math., 33, Part 1, Amer. Math. Soc., Providence, RI, 1979, 179–184 | MR | Zbl
[13] E. Frenkel, “Recent advances in the Langlands program”, Bull. Amer. Math. Soc. (N.S.), 41:2 (2004), 151–184 ; (2003), arXiv: math/0303074 | DOI | MR | Zbl
[14] E. Frenkel, “Gauge theory and Langlands duality”, Séminaire N. Bourbaki, Exposés 997–1011, v. 2008/2009, Astérisque, 332, Soc. Math. France, Paris, 2010, ix–x, 369–403, Exp. No 1010 | MR | Zbl
[15] N. Ganter, M. Kapranov, “Representation and character theory in 2-categories”, Adv. Math., 217:5 (2008), 2268–2300 ; (2006), arXiv: math/0602510 | DOI | MR | Zbl
[16] S. Gelbart, “Elliptic curves and automorphic representantions”, Adv. Math., 21:3 (1976), 235–292 | DOI | MR | Zbl
[17] R. Godement, H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Math., 260, Springer-Verlag, Berlin–New York, 1972, viii+188 pp. | DOI | MR | Zbl
[18] M. Harris, R. Taylor, The geometry and cohomology of some simple Shimura varieties, Ann. of Math. Stud., 151, Princeton Univ. Press, Princeton, NJ, 2001, viii+276 pp. | MR | Zbl
[19] M. Hazewinkel, “Corps de classes local”, Appendix to: M. Demazure, P. Gabriel, Groupes algébriques, v. I, Géométrie algébrique, généralités, groupes commutatifs, Masson, Paris; North-Holland, Amsterdam, 1970, xxvi+700 pp. | MR | Zbl
[20] G. Henniart, “Une preuve simple des conjectures de Langlands pour $\mathrm{GL}(n)$ sur un corps $p$-adique”, Invent. Math., 139:2 (2000), 439–455 | DOI | MR | Zbl
[21] G. Henniart, R. Herb, “Automorphic induction for $\mathrm{GL}(n)$ (over local nonarchimedean fields)”, Duke Math. J., 78:1 (1995), 131–192 | DOI | MR | Zbl
[22] K. I. Ikeda, Multi-dimensional Langlands functoriality principle. Notes on M. M. Kapranov's work, Ser. Number Theory Appl., 3, World Scientific Publ. Co., Singapore, 200 pp.
[23] Invitation to higher local fields, Papers from the conference (Münster, Germany, August 29–September 5, 1999), Geom. Topol. Monogr., 3, eds. I. Fesenko, M. Kurihara, Geometry Topology Publications, Coventry, 2000, front matter+304 pp. (electronic) | MR | Zbl
[24] H. Jacquet, “Principal $L$-functions of the linear group”, Automorphic forms representations and $L$-functions (Oregon State Univ., Corvallis, OR, 1977), Proc. Sympos. Pure Math., 33, Part 2, Amer. Math. Soc., Providence, RI, 1979, 63–86 | MR | Zbl
[25] H. Jacquet, R. P. Langlands, Automorphic forms on $\mathrm{GL}(2)$, Lecture Notes in Math., 114, Springer-Verlag, Berlin–New York, 1970, vii+548 pp. ; E. Zhake, R. Lenglends, Avtomorfnye formy na $\mathrm{GL}(2)$, Mir, M., 1973, 372 pp. | DOI | MR | Zbl | MR | Zbl
[26] M. M. Kapranov, “Analogies between the Langlands correspondence and topological quantum field theory”, Functional analysis on the eve of 21st century, Proceedings of the conference (Rutgers University, New Brunswick, NJ, October 24–27, 1993), v. 1, Progr. Math., 131, Birkhäuser, Boston, MA, 1995, 119–151 | MR | Zbl
[27] K. Kato, “Residue homomorphisms in Milnor's $K$-theory”, Galois Groups and their Representations (Nagoya, Japan, 1981), Adv. Stud. Pure Math., 2, 1983, 153–172 | MR | Zbl
[28] Y. Kawada, J. Tate, “On the Galois cohomology of unramified extensions of function fields in one variable”, Amer. J. Math., 77:2 (1955), 197–217 | DOI | MR | Zbl
[29] A. W. Knapp, “Local Langlands correspondance: the Archimedean case”, Motives (University of Washington, Seattle, WA, USA, July 20–August 2, 1991), Proc. Sympos. Pure Math., 55, Part 2, ed. U. Jannsen et al., Amer. Math. Soc., Providence, RI, 1994, 393–410 | MR | Zbl
[30] H. Koch, Galoissche Theorie der $p$-Erweiterungen, Mathematische Monographien, 10, Springer-Verlag, Berlin–New York; VEB Deutscher Verlag der Wissenschaften, Berlin, 1970, x+161 pp. ; Kh. Kokh, Teoriya Galua $p$-rasshirenii, Mir, M., 1973, 199 pp. | MR | Zbl | MR
[31] Y. Koya, “A generalization of class formations by using hypercohomology”, Invent. Math., 101:3 (1990), 705–715 | DOI | MR | Zbl
[32] L. Lafforgue, “Chtoucas de Drinfeld et correspondance de Langlands”, Invent. Math., 147:1 (2002), 1–241 | DOI | MR | Zbl
[33] R. P. Langlands, “Problems in the theory of automorphic forms”, To Salomon Bochner. In gratitude, Lectures in modern analysis and applications, v. III, Lecture Notes in Math., 170, Springer, Berlin, 1970, 18–61 ; R. Lenglends, “Voprosy teorii avtomorfnykh form”, Matematika (sb. perevodov), 15, no. 2, Mir, M., 1971, 57–83 | DOI | MR | Zbl | Zbl
[34] R. Langlands, Representations of abelian algebraic groups, 1988, 19 pp. (rasprostranyalos kak preprint, nachinaya s 1969 g.); “Representations of abelian algebraic groups”, Pacific J. Math., 181:3, Spec. Issue. Olga Taussky-Todd: in memoriam (1997), 231–250 | MR | Zbl
[35] R. Lenglends, Funktorialnost i vzaimnost, Kurs lektsii, MIAN, M., sentyabr–oktyabr 2011 http://publications.ias.edu/sites/default/files/lectures.pdf
[36] G. Laumon, M. Rapoport, U. Stuhler, “$\mathcal{D}$-elliptic sheaves and the Langlands correspondence”, Invent. Math., 113:2 (1993), 217–338 | DOI | MR | Zbl
[37] Dongwen Liu, Tame symbols and reciprocity laws on arithmetic surfaces, 2012, arXiv: 1203.6712
[38] M. Morrow, Grothendieck's trace map for arithmetic surfaces via residues and higher adeles, 2011, arXiv: 1101.1883
[39] D. V. Osipov, “Adelic constructions of direct images of differentials and symbols”, Sb. Math., 188:5 (1997), 697–723 ; (1998), arXiv: math/9802112 | DOI | MR | Zbl
[40] A. N. Parshin, “Chern classes, adèles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 | MR | Zbl
[41] A. N. Parshin, “Numbers as functions: the developement of an idea in the Moscow school of algebraic geometry”, A lecture at the conference “Matériaux pour l'Histore des Mathématiques au XXème siècle” (Nice, 1996), \it Mathemathical events of the twentieth century, Springer, Berlin; Phasis, Moscow, 2006, 297–329 ; 2009, arXiv: 0912.3785 | MR | Zbl
[42] A. N. Parshin, “Representations of higher adelic groups and arithmetic”, Proceedings of the International Congress of Mathematicians (Hyderabad, India, August 19–27, 2010), v. I; Hindustan Book Agency, New Delhi, 2010, 362–392 | MR | Zbl
[43] A. N. Parshin, “Zapiski o formule Puassona”, Algebra i analiz, 23:5 (2011), 1–54 ; (2010), arXiv: 1011.3392
[44] D. Ramakrishnan, “Pure motives and automorphic forms”, Motives (University of Washington, Seattle, WA, USA, July 20–August 2, 1991), Proc. Sympos. Pure Math., 55, Part 2, Amer. Math. Soc., Providence, RI, 1994, 411–446 | MR | Zbl
[45] W. Raskind, “Abelian class field theory of arithmetic schemes”, $K$-theory and algebraic geometry: connections with quadratic forms and division algebras (July 6–24, 1992, University of California, Santa Barbara, USA), Proc. Sympos. Pure Math., 58, Part 1, eds. B. Jacob et al., Amer. Math. Soc., Providence, RI, 1995, 85–187 | MR | Zbl
[46] J.-P. Serre, Groupes algébriques et corps de classes, Publications de l'institut de mathématique de l'Université de Nancago, VII, Hermann, Paris, 1959, 202 pp. ; Zh.-P. Serr, Algebraicheskie gruppy i polya klassov, Mir, M., 1968, 282 pp. | MR | Zbl | Zbl
[47] J.-P. Serre, “Sur les corps locaux à corps résiduel algébriquement clos”, Bull. Soc. Math. France, 89 (1961), 105–154 | MR | Zbl
[48] J.-P. Serre, “Facteurs locaux des fonctions zêta des variétés algébriques (Définitions et conjectures)”, Theorie Nombres, Séminaire Delange–Pisot–Poitou, 11, 1969/1970:19 (1970), 1–15 ; Zh.-P. Serr, “Lokalnye mnozhiteli $\zeta$-funktsii”, Matematika (sb. perevodov), 15, no. 1, Mir, M., 1971, 3–13 | Zbl | Zbl
[49] I. R. Shafarevich, “Polya algebraicheskikh chisel”, Proceedings of the International Congress of Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, 163–176
[50] Algebraic number theory, eds. J. W. S. Cassels, A. Fröhlich, Academic Press, London–New York, 1967, 305–347
[51] J. Tate, “Number theoretic background”, Automorphic forms, representations and $L$-functions (Oregon State Univ., Corvallis, OR, 1977), Proc. Sympos. Pure Math., 33, Part 2, Amer. Math. Soc., Providence, RI, 1979, 3–26 ; Dzh. Teit, “Teoretiko-chislovoe vvedenie”, Avtomorfnye formy, predstavleniya i $L$-funktsii, Matematika. Novoe v zarubezhnoi nauke, 34, Mir, M., 1984, 73–112 | MR | Zbl | MR
[52] A. Weil, “Letter to Simone Weil (1940)”, {ØE}uvres scientifiques. Collected papers, v. 1, Springer-Verlag, New York–Heidelberg, 1979, 244–256 ; M. H. Krieger, “A 1940 letter of André Weil on analogy in mathematics”, Notices Amer. Math. Soc., 52:3 (2005), 334–341 | MR | Zbl | MR | Zbl
[53] A. Weil, “Number-theory and algebraic geometry”, Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), v. 2, Amer. Math. Soc., Providence, RI, 1952, 90–100 ; A. Veil, “Teoriya chisel i algebraicheskaya geometriya”, Matematika (sb. perevodov), 2, no. 4, IL, M., 1958, 49–58 | MR | Zbl
[54] A. Weil, “Zeta-functions and Mellin transforms”, Algebraic geometry, Internat. Colloq. (Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, 409–426 | MR | Zbl
[55] A. Weil, Basic number theory, Grundlehren Math. Wiss., 144, Springer-Verlag, New York, 1967, xviii+294 pp.; A. Veil, Osnovy teorii chisel, Mir, M., 1972, 408 pp.
[56] D. P. Zhelobenko, Garmonicheskii analiz na poluprostykh kompleksnykh gruppakh Li, Sovremennye problemy matematiki, Nauka, M., 1974, 240 pp. | MR | Zbl