Algebraic methods for solution of polyhedra
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 3, pp. 445-505
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			By analogy with the solution of triangles, the solution of polyhedra means a theory and methods for calculating some geometric parameters of polyhedra in terms of other parameters of them. The main content of this paper is a survey of results on calculating the volumes of polyhedra in terms of their metrics and combinatorial structures. It turns out that a far-reaching generalization of Heron's formula for the area of a triangle to the volumes of polyhedra is possible, and it underlies the proof of the conjecture that the volume of a deformed flexible polyhedron remains constant.
Bibliography: 110 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
polyhedra, combinatorial structure, metric, bending, bellows conjecture, volume polynomials, generalization of Heron's formula.
Mots-clés : volume
                    
                  
                
                
                Mots-clés : volume
@article{RM_2011_66_3_a0,
     author = {I. Kh. Sabitov},
     title = {Algebraic methods for solution of polyhedra},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {445--505},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_3_a0/}
}
                      
                      
                    I. Kh. Sabitov. Algebraic methods for solution of polyhedra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 3, pp. 445-505. http://geodesic.mathdoc.fr/item/RM_2011_66_3_a0/
