A note on the Chevalley--Warning theorems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 427-435

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f_1,\dots,f_r$ be polynomials in $n$ variables, over the field $\mathbb{F}_q$, and suppose that their degrees are $d_1,\dots,d_r$. It was shown by Warning in 1935 that if $\mathscr N$ is the number of common zeros of the polynomials $f_i$, then $\mathscr N\geqslant q^{n-d}$. It is the main aim of the present paper to improve on this bound. When the set of common zeros does not form an affine linear subspace in $\mathbb{F}_q^n$, it is shown for example that $\mathscr N\geqslant2q^{n-d}$ if $q\geqslant4$, and that $\mathscr N\geqslant q^{n+1-d}/(n+2-d)$ if the $f_i$ are all homogeneous. Bibliography: 5 titles.
Keywords: Chevalley–Warning theorems, polynomials, finite fields, zeros, lower bound, number of zeros, affine linear space.
@article{RM_2011_66_2_a5,
     author = {D. R. Heath-Brown},
     title = {A note on the {Chevalley--Warning} theorems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {427--435},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2011_66_2_a5/}
}
TY  - JOUR
AU  - D. R. Heath-Brown
TI  - A note on the Chevalley--Warning theorems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 427
EP  - 435
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2011_66_2_a5/
LA  - en
ID  - RM_2011_66_2_a5
ER  - 
%0 Journal Article
%A D. R. Heath-Brown
%T A note on the Chevalley--Warning theorems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 427-435
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2011_66_2_a5/
%G en
%F RM_2011_66_2_a5
D. R. Heath-Brown. A note on the Chevalley--Warning theorems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 66 (2011) no. 2, pp. 427-435. http://geodesic.mathdoc.fr/item/RM_2011_66_2_a5/