A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 183-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2010_65_1_a7,
     author = {M. V. Shamolin},
     title = {A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {183--185},
     year = {2010},
     volume = {65},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_1_a7/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 183
EP  - 185
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_1_a7/
LA  - en
ID  - RM_2010_65_1_a7
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 183-185
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/RM_2010_65_1_a7/
%G en
%F RM_2010_65_1_a7
M. V. Shamolin. A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 183-185. http://geodesic.mathdoc.fr/item/RM_2010_65_1_a7/

[1] M. V. Shamolin, Dokl. RAN, 375:3 (2000), 343–346 | MR

[2] D. V. Georgievskii, M. V. Shamolin, Dokl. RAN, 380:1 (2001), 47–50 | MR

[3] M. V. Shamolin, Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Izd-vo “Ekzamen”, M., 2007

[4] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1979 | MR | Zbl

[5] V. V. Trofimov, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1984, no. 6, 31–33 | MR | Zbl

[6] O. I. Bogoyavlenskii, Dokl. AN SSSR, 287:5 (1986), 1105–1109 | MR | Zbl

[7] M. V. Shamolin, Dokl. RAN, 364:5 (1999), 627–629 | MR | Zbl

[8] M. V. Shamolin, UMN, 53:3 (1998), 209–210 | MR | Zbl