A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 183-185

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_2010_65_1_a7,
     author = {M. V. Shamolin},
     title = {A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {183--185},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2010_65_1_a7/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 183
EP  - 185
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2010_65_1_a7/
LA  - en
ID  - RM_2010_65_1_a7
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 183-185
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2010_65_1_a7/
%G en
%F RM_2010_65_1_a7
M. V. Shamolin. A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 65 (2010) no. 1, pp. 183-185. http://geodesic.mathdoc.fr/item/RM_2010_65_1_a7/