Homogeneous para-K\"ahler Einstein manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 1, pp. 1-43
Voir la notice de l'article provenant de la source Math-Net.Ru
A para-Kähler manifold can be defined as a pseudo-Riemannian manifold $(M,g)$ with a parallel skew-symmetric para-complex structure $K$, that is, a parallel field of skew-symmetric endomorphisms with $K^2=\operatorname{Id}$ or, equivalently, as a symplectic manifold $(M,\omega)$ with a bi-Lagrangian structure $L^\pm$, that is, two complementary integrable Lagrangian distributions. A homogeneous manifold $M = G/H$ of a semisimple Lie group $G$ admits an invariant para-Kähler structure $(g,K)$ if and only if it is a covering of the adjoint orbit $\operatorname{Ad}_Gh$ of a semisimple element $h$. A description is given of all invariant para-Kähler structures $(g,K)$ on such a homogeneous manifold. With the use of a para-complex analogue of basic formulae of Kähler geometry it is proved that any invariant para-complex structure $K$ on $M=G/H$ defines a unique para-Kähler Einstein structure $(g,K)$ with given non-zero scalar curvature. An explicit formula for the Einstein metric $g$ is given. A survey of recent results on para-complex geometry is included.
@article{RM_2009_64_1_a0,
author = {D. V. Alekseevsky and C. Medori and A. Tomassini},
title = {Homogeneous {para-K\"ahler} {Einstein} manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--43},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2009_64_1_a0/}
}
TY - JOUR AU - D. V. Alekseevsky AU - C. Medori AU - A. Tomassini TI - Homogeneous para-K\"ahler Einstein manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 1 EP - 43 VL - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2009_64_1_a0/ LA - en ID - RM_2009_64_1_a0 ER -
D. V. Alekseevsky; C. Medori; A. Tomassini. Homogeneous para-K\"ahler Einstein manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 64 (2009) no. 1, pp. 1-43. http://geodesic.mathdoc.fr/item/RM_2009_64_1_a0/