Birationally rigid varieties. I. Fano varieties
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 5, pp. 857-942

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of birational rigidity of rationally connected varieties generalises the classical rationality problem. This paper gives a survey of the current state of this theory and traces its history from Noether's theorem and the Lüroth problem to the latest results on the birational superrigidity of higher-dimensional Fano varieties. The main components of the method of maximal singularities are considered.
@article{RM_2007_62_5_a1,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid varieties. {I.} {Fano} varieties},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {857--942},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2007_62_5_a1/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid varieties. I. Fano varieties
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 857
EP  - 942
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2007_62_5_a1/
LA  - en
ID  - RM_2007_62_5_a1
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid varieties. I. Fano varieties
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 857-942
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2007_62_5_a1/
%G en
%F RM_2007_62_5_a1
A. V. Pukhlikov. Birationally rigid varieties. I. Fano varieties. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 5, pp. 857-942. http://geodesic.mathdoc.fr/item/RM_2007_62_5_a1/