Birationally rigid varieties. I. Fano varieties
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 5, pp. 857-942
Voir la notice de l'article provenant de la source Math-Net.Ru
The theory of birational rigidity of rationally connected varieties generalises the classical rationality problem. This paper gives a survey of the current state of this theory and traces its history from Noether's theorem and the Lüroth problem to the latest results on the birational superrigidity of higher-dimensional Fano varieties. The main components of the method of maximal singularities are considered.
@article{RM_2007_62_5_a1,
author = {A. V. Pukhlikov},
title = {Birationally rigid varieties. {I.} {Fano} varieties},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {857--942},
publisher = {mathdoc},
volume = {62},
number = {5},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2007_62_5_a1/}
}
A. V. Pukhlikov. Birationally rigid varieties. I. Fano varieties. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 62 (2007) no. 5, pp. 857-942. http://geodesic.mathdoc.fr/item/RM_2007_62_5_a1/