Szemer\'edi's theorem and problems on arithmetic progressions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 1101-1166
Voir la notice de l'article provenant de la source Math-Net.Ru
Szemerédi's famous theorem on arithmetic progressions asserts
that every subset of integers of positive asymptotic density
contains arithmetic progressions of arbitrary length. His
remarkable theorem has been developed into a major new area of
combinatorial number theory. This is the topic of the present survey.
@article{RM_2006_61_6_a2,
author = {I. D. Shkredov},
title = {Szemer\'edi's theorem and problems on arithmetic progressions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1101--1166},
publisher = {mathdoc},
volume = {61},
number = {6},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2006_61_6_a2/}
}
TY - JOUR AU - I. D. Shkredov TI - Szemer\'edi's theorem and problems on arithmetic progressions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 1101 EP - 1166 VL - 61 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2006_61_6_a2/ LA - en ID - RM_2006_61_6_a2 ER -
I. D. Shkredov. Szemer\'edi's theorem and problems on arithmetic progressions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 1101-1166. http://geodesic.mathdoc.fr/item/RM_2006_61_6_a2/