Szemer\'edi's theorem and problems on arithmetic progressions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 1101-1166

Voir la notice de l'article provenant de la source Math-Net.Ru

Szemerédi's famous theorem on arithmetic progressions asserts that every subset of integers of positive asymptotic density contains arithmetic progressions of arbitrary length. His remarkable theorem has been developed into a major new area of combinatorial number theory. This is the topic of the present survey.
@article{RM_2006_61_6_a2,
     author = {I. D. Shkredov},
     title = {Szemer\'edi's theorem and problems on arithmetic progressions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1101--1166},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2006_61_6_a2/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - Szemer\'edi's theorem and problems on arithmetic progressions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 1101
EP  - 1166
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2006_61_6_a2/
LA  - en
ID  - RM_2006_61_6_a2
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T Szemer\'edi's theorem and problems on arithmetic progressions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 1101-1166
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2006_61_6_a2/
%G en
%F RM_2006_61_6_a2
I. D. Shkredov. Szemer\'edi's theorem and problems on arithmetic progressions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 6, pp. 1101-1166. http://geodesic.mathdoc.fr/item/RM_2006_61_6_a2/