Newton series, the Leibniz rule, and functions of finite order
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 4, pp. 775-777
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_2006_61_4_a8,
     author = {G. G. Ilyuta},
     title = {Newton series, the {Leibniz} rule, and functions of finite order},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {775--777},
     year = {2006},
     volume = {61},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2006_61_4_a8/}
}
TY  - JOUR
AU  - G. G. Ilyuta
TI  - Newton series, the Leibniz rule, and functions of finite order
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 775
EP  - 777
VL  - 61
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2006_61_4_a8/
LA  - en
ID  - RM_2006_61_4_a8
ER  - 
%0 Journal Article
%A G. G. Ilyuta
%T Newton series, the Leibniz rule, and functions of finite order
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 775-777
%V 61
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2006_61_4_a8/
%G en
%F RM_2006_61_4_a8
G. G. Ilyuta. Newton series, the Leibniz rule, and functions of finite order. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 4, pp. 775-777. http://geodesic.mathdoc.fr/item/RM_2006_61_4_a8/

[1] G. G. Ilyuta, Dokl. RAN, 347:3 (1996), 306–308 | MR | Zbl

[2] G. G. Ilyuta, UMN, 58:4 (2003), 149–150 | MR | Zbl

[3] M. Čadek, J. Šimša, Aequationes Math., 40:1 (1990), 8–25 | DOI | MR | Zbl

[4] E. Koelink, Special function, $q$-series and related topics (Toronto, ON, 1995), Fields Inst. Commun., 14, ed. M. Ismail, Amer. Math. Soc., Providence, RI, 1997, 109–129 | MR | Zbl

[5] A. Ungar, Aequationes Math., 26:1 (1983), 104–112 | DOI | MR | Zbl

[6] J. Schwaiger, Aequationes Math., 43:2–3 (1992), 198–210 | DOI | MR | Zbl

[7] S. Roman, The umbral calculus, Academic Press, New York, 1984 | MR | Zbl

[8] I. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, New York, 1995 | MR | Zbl

[9] C. D'Andrea, Trans. Amer. Math. Soc., 354:7 (2002), 2595–2629 | DOI | MR | Zbl

[10] P. Pedersen, B. Sturmfels, Math. Z., 214:3 (1993), 377–396 | DOI | MR | Zbl

[11] B. Mourrain, V. Y. Pan, J. Complexity, 16:1 (2000), 110–180 | DOI | MR | Zbl

[12] A. Lascoux, Notes on interpolation in one and several variables, http://phalanstere.univ-mlv.fr/ãl

[13] J. C. Eilbeck, V. Z. Enolskii, E. Previato, Lett. Math. Phys., 63:1 (2003), 5–17 | DOI | MR | Zbl