@article{RM_2006_61_4_a8,
author = {G. G. Ilyuta},
title = {Newton series, the {Leibniz} rule, and functions of finite order},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {775--777},
year = {2006},
volume = {61},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2006_61_4_a8/}
}
G. G. Ilyuta. Newton series, the Leibniz rule, and functions of finite order. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 61 (2006) no. 4, pp. 775-777. http://geodesic.mathdoc.fr/item/RM_2006_61_4_a8/
[1] G. G. Ilyuta, Dokl. RAN, 347:3 (1996), 306–308 | MR | Zbl
[2] G. G. Ilyuta, UMN, 58:4 (2003), 149–150 | MR | Zbl
[3] M. Čadek, J. Šimša, Aequationes Math., 40:1 (1990), 8–25 | DOI | MR | Zbl
[4] E. Koelink, Special function, $q$-series and related topics (Toronto, ON, 1995), Fields Inst. Commun., 14, ed. M. Ismail, Amer. Math. Soc., Providence, RI, 1997, 109–129 | MR | Zbl
[5] A. Ungar, Aequationes Math., 26:1 (1983), 104–112 | DOI | MR | Zbl
[6] J. Schwaiger, Aequationes Math., 43:2–3 (1992), 198–210 | DOI | MR | Zbl
[7] S. Roman, The umbral calculus, Academic Press, New York, 1984 | MR | Zbl
[8] I. Macdonald, Symmetric functions and Hall polynomials, Oxford Univ. Press, New York, 1995 | MR | Zbl
[9] C. D'Andrea, Trans. Amer. Math. Soc., 354:7 (2002), 2595–2629 | DOI | MR | Zbl
[10] P. Pedersen, B. Sturmfels, Math. Z., 214:3 (1993), 377–396 | DOI | MR | Zbl
[11] B. Mourrain, V. Y. Pan, J. Complexity, 16:1 (2000), 110–180 | DOI | MR | Zbl
[12] A. Lascoux, Notes on interpolation in one and several variables, http://phalanstere.univ-mlv.fr/ãl
[13] J. C. Eilbeck, V. Z. Enolskii, E. Previato, Lett. Math. Phys., 63:1 (2003), 5–17 | DOI | MR | Zbl