Birationally rigid Fano varieties
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 5, pp. 875-965

Voir la notice de l'article provenant de la source Math-Net.Ru

The birational superrigidity and, in particular, the non-rationality of a smooth three-dimensional quartic was proved by V. Iskovskikh and Yu. Manin in 1971, and this led immediately to a counterexample to the three-dimensional Lüroth problem. Since then, birational rigidity and superrigidity have been proved for a broad class of higher-dimensional varieties, among which the Fano varieties occupy the central place. The present paper is a survey of the theory of birationally rigid Fano varieties.
@article{RM_2005_60_5_a2,
     author = {I. A. Cheltsov},
     title = {Birationally rigid {Fano} varieties},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {875--965},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_5_a2/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Birationally rigid Fano varieties
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 875
EP  - 965
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2005_60_5_a2/
LA  - en
ID  - RM_2005_60_5_a2
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Birationally rigid Fano varieties
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 875-965
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2005_60_5_a2/
%G en
%F RM_2005_60_5_a2
I. A. Cheltsov. Birationally rigid Fano varieties. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 5, pp. 875-965. http://geodesic.mathdoc.fr/item/RM_2005_60_5_a2/