Birationally rigid Fano varieties
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 5, pp. 875-965
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The birational superrigidity and, in particular, the non-rationality of a smooth three-dimensional quartic was proved by V. Iskovskikh and Yu. Manin in 1971, and this led immediately to a counterexample to the three-dimensional Lüroth problem. Since then, birational rigidity and superrigidity have been proved for a broad class of higher-dimensional varieties, among which the Fano varieties occupy the central place. The present paper is a survey of the theory of birationally rigid Fano varieties.
			
            
            
            
          
        
      @article{RM_2005_60_5_a2,
     author = {I. A. Cheltsov},
     title = {Birationally rigid {Fano} varieties},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {875--965},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2005_60_5_a2/}
}
                      
                      
                    I. A. Cheltsov. Birationally rigid Fano varieties. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 60 (2005) no. 5, pp. 875-965. http://geodesic.mathdoc.fr/item/RM_2005_60_5_a2/
