Random metric spaces and universality
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 2, pp. 259-295

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of random metric space is defined, and it is proved that such a space is isometric to the Urysohn universal metric space with probability one. The main technique is the study of universal and random distance matrices; properties of metric (in particular, universal) spaces are related to properties of distance matrices. Examples of other categories in which randomness and universality coincide (graphs, and so on) are given.
@article{RM_2004_59_2_a4,
     author = {A. M. Vershik},
     title = {Random metric spaces and universality},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {259--295},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_2_a4/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Random metric spaces and universality
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 259
EP  - 295
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2004_59_2_a4/
LA  - en
ID  - RM_2004_59_2_a4
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Random metric spaces and universality
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 259-295
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2004_59_2_a4/
%G en
%F RM_2004_59_2_a4
A. M. Vershik. Random metric spaces and universality. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 2, pp. 259-295. http://geodesic.mathdoc.fr/item/RM_2004_59_2_a4/