Random metric spaces and universality
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 2, pp. 259-295
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The notion of random metric space is defined, and it is proved that such a space is isometric to
the Urysohn universal metric space with probability one. The main technique is the study of universal and random distance matrices; properties of metric (in particular, universal) spaces are related to properties of distance matrices. Examples of other categories in
which randomness and universality coincide (graphs, and so on) are given.
			
            
            
            
          
        
      @article{RM_2004_59_2_a4,
     author = {A. M. Vershik},
     title = {Random metric spaces and universality},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {259--295},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2004_59_2_a4/}
}
                      
                      
                    A. M. Vershik. Random metric spaces and universality. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 59 (2004) no. 2, pp. 259-295. http://geodesic.mathdoc.fr/item/RM_2004_59_2_a4/