Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 4, pp. 725-772
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper presents a survey of results on computing the small deviation asymptotics for Gaussian measures, that is, the asymptotics of the probabilities
$$
\mu(\varepsilon D), \qquad \varepsilon\to0,
$$
where $D$ is a bounded domain in a Banach space $(B,{\|\cdot\|})$ (for example, $D=\{x\in B:\|x\|\leqslant 1\}$) and $\mu$ a Gaussian measure on $B$.
The main attention is focused on calculating the values of constants in the exact or logarithmic asymptotics. The survey contains new numerical results; some erroneous assertions in previous papers on this topic are also noted.
The following classes of Gaussian processes and fields are studied in detail: Wiener processes and related processes, Brownian bridges, Bessel processes, vector Wiener processes, Gaussian Markov processes, Gaussian processes with stationary increments, fractional Ornstein–Uhlenbeck processes, $n$-parameter fractional Brownian motion, $n$-parameter Wiener–Chentsov fields, and the Wiener pillow. Results on small deviations are presented in diverse norms, namely, the sup-norm, Hilbert norms, $L^p$-norms, Hölder norms, Orlicz norms,
and weighted sup-norms. 
About 30 problems concerned with finding exact constants in asymptotic expressions for small deviations are posed. 
The relation to Chung's law of the iterated logarithm is also considered, and a number of other results are presented.
			
            
            
            
          
        
      @article{RM_2003_58_4_a2,
     author = {V. R. Fatalov},
     title = {Constants in the asymptotics of small deviation probabilities for {Gaussian} processes and fields},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {725--772},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2003_58_4_a2/}
}
                      
                      
                    TY - JOUR AU - V. R. Fatalov TI - Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 725 EP - 772 VL - 58 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2003_58_4_a2/ LA - en ID - RM_2003_58_4_a2 ER -
%0 Journal Article %A V. R. Fatalov %T Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2003 %P 725-772 %V 58 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2003_58_4_a2/ %G en %F RM_2003_58_4_a2
V. R. Fatalov. Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 4, pp. 725-772. http://geodesic.mathdoc.fr/item/RM_2003_58_4_a2/
