Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 4, pp. 725-772

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a survey of results on computing the small deviation asymptotics for Gaussian measures, that is, the asymptotics of the probabilities $$ \mu(\varepsilon D), \qquad \varepsilon\to0, $$ where $D$ is a bounded domain in a Banach space $(B,{\|\cdot\|})$ (for example, $D=\{x\in B:\|x\|\leqslant 1\}$) and $\mu$ a Gaussian measure on $B$. The main attention is focused on calculating the values of constants in the exact or logarithmic asymptotics. The survey contains new numerical results; some erroneous assertions in previous papers on this topic are also noted. The following classes of Gaussian processes and fields are studied in detail: Wiener processes and related processes, Brownian bridges, Bessel processes, vector Wiener processes, Gaussian Markov processes, Gaussian processes with stationary increments, fractional Ornstein–Uhlenbeck processes, $n$-parameter fractional Brownian motion, $n$-parameter Wiener–Chentsov fields, and the Wiener pillow. Results on small deviations are presented in diverse norms, namely, the sup-norm, Hilbert norms, $L^p$-norms, Hölder norms, Orlicz norms, and weighted sup-norms. About 30 problems concerned with finding exact constants in asymptotic expressions for small deviations are posed. The relation to Chung's law of the iterated logarithm is also considered, and a number of other results are presented.
@article{RM_2003_58_4_a2,
     author = {V. R. Fatalov},
     title = {Constants in the asymptotics of small deviation probabilities for {Gaussian} processes and fields},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {725--772},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2003_58_4_a2/}
}
TY  - JOUR
AU  - V. R. Fatalov
TI  - Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 725
EP  - 772
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2003_58_4_a2/
LA  - en
ID  - RM_2003_58_4_a2
ER  - 
%0 Journal Article
%A V. R. Fatalov
%T Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 725-772
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2003_58_4_a2/
%G en
%F RM_2003_58_4_a2
V. R. Fatalov. Constants in the asymptotics of small deviation probabilities for Gaussian processes and fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 4, pp. 725-772. http://geodesic.mathdoc.fr/item/RM_2003_58_4_a2/