Averaging of solutions of the Neumann problem for the Lam\'e system in the theory of elasticity in a domain part of which is a~union of thin cylinders
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 4, pp. 810-811

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_2003_58_4_a18,
     author = {V. V. Yablokov},
     title = {Averaging of solutions of the {Neumann} problem for the {Lam\'e} system in the theory of elasticity in a domain part of which is a~union of thin cylinders},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {810--811},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2003_58_4_a18/}
}
TY  - JOUR
AU  - V. V. Yablokov
TI  - Averaging of solutions of the Neumann problem for the Lam\'e system in the theory of elasticity in a domain part of which is a~union of thin cylinders
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 810
EP  - 811
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2003_58_4_a18/
LA  - en
ID  - RM_2003_58_4_a18
ER  - 
%0 Journal Article
%A V. V. Yablokov
%T Averaging of solutions of the Neumann problem for the Lam\'e system in the theory of elasticity in a domain part of which is a~union of thin cylinders
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 810-811
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2003_58_4_a18/
%G en
%F RM_2003_58_4_a18
V. V. Yablokov. Averaging of solutions of the Neumann problem for the Lam\'e system in the theory of elasticity in a domain part of which is a~union of thin cylinders. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 4, pp. 810-811. http://geodesic.mathdoc.fr/item/RM_2003_58_4_a18/