The complement $Q_E(n)$ of the point Eucl of Euclidean space in the Banach--Mazur compactum $Q(n)$ is a $Q$-manifold
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 3, pp. 607-609

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_2003_58_3_a5,
     author = {S. M. Ageev and S. A. Bogatyi and D. Repov\v{s}},
     title = {The complement $Q_E(n)$ of the point {Eucl} of {Euclidean} space in the {Banach--Mazur} compactum $Q(n)$ is a $Q$-manifold},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {607--609},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2003_58_3_a5/}
}
TY  - JOUR
AU  - S. M. Ageev
AU  - S. A. Bogatyi
AU  - D. Repovš
TI  - The complement $Q_E(n)$ of the point Eucl of Euclidean space in the Banach--Mazur compactum $Q(n)$ is a $Q$-manifold
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 607
EP  - 609
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2003_58_3_a5/
LA  - en
ID  - RM_2003_58_3_a5
ER  - 
%0 Journal Article
%A S. M. Ageev
%A S. A. Bogatyi
%A D. Repovš
%T The complement $Q_E(n)$ of the point Eucl of Euclidean space in the Banach--Mazur compactum $Q(n)$ is a $Q$-manifold
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 607-609
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2003_58_3_a5/
%G en
%F RM_2003_58_3_a5
S. M. Ageev; S. A. Bogatyi; D. Repovš. The complement $Q_E(n)$ of the point Eucl of Euclidean space in the Banach--Mazur compactum $Q(n)$ is a $Q$-manifold. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 3, pp. 607-609. http://geodesic.mathdoc.fr/item/RM_2003_58_3_a5/