The complement $Q_E(n)$ of the point Eucl of Euclidean space in the Banach--Mazur compactum $Q(n)$ is a $Q$-manifold
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 3, pp. 607-609
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_2003_58_3_a5,
     author = {S. M. Ageev and S. A. Bogatyi and D. Repov\v{s}},
     title = {The complement $Q_E(n)$ of the point {Eucl} of {Euclidean} space in the {Banach--Mazur} compactum $Q(n)$ is a $Q$-manifold},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {607--609},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2003_58_3_a5/}
}
                      
                      
                    TY - JOUR AU - S. M. Ageev AU - S. A. Bogatyi AU - D. Repovš TI - The complement $Q_E(n)$ of the point Eucl of Euclidean space in the Banach--Mazur compactum $Q(n)$ is a $Q$-manifold JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 607 EP - 609 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2003_58_3_a5/ LA - en ID - RM_2003_58_3_a5 ER -
%0 Journal Article %A S. M. Ageev %A S. A. Bogatyi %A D. Repovš %T The complement $Q_E(n)$ of the point Eucl of Euclidean space in the Banach--Mazur compactum $Q(n)$ is a $Q$-manifold %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2003 %P 607-609 %V 58 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2003_58_3_a5/ %G en %F RM_2003_58_3_a5
S. M. Ageev; S. A. Bogatyi; D. Repovš. The complement $Q_E(n)$ of the point Eucl of Euclidean space in the Banach--Mazur compactum $Q(n)$ is a $Q$-manifold. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 3, pp. 607-609. http://geodesic.mathdoc.fr/item/RM_2003_58_3_a5/
