Derived categories of coherent sheaves and equivalences between them
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 3, pp. 511-591
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper studies the derived categories of coherent sheaves on smooth complete algebraic varieties and equivalences between them. We prove that every equivalence of categories is represented by an object on the product of the varieties. This result is applied to describe the Abelian varieties and K3 surfaces that have equivalent derived categories of coherent sheaves.
			
            
            
            
          
        
      @article{RM_2003_58_3_a2,
     author = {D. O. Orlov},
     title = {Derived categories of coherent sheaves and equivalences between them},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {511--591},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2003_58_3_a2/}
}
                      
                      
                    TY - JOUR AU - D. O. Orlov TI - Derived categories of coherent sheaves and equivalences between them JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 511 EP - 591 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2003_58_3_a2/ LA - en ID - RM_2003_58_3_a2 ER -
D. O. Orlov. Derived categories of coherent sheaves and equivalences between them. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 3, pp. 511-591. http://geodesic.mathdoc.fr/item/RM_2003_58_3_a2/
