$L_{3,\infty}$-solutions of the Navier--Stokes equations and backward uniqueness
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 2, pp. 211-250
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the $L_{3,\infty}$-solutions of the Cauchy problem for the three-dimensional Navier–Stokes equations are smooth.
@article{RM_2003_58_2_a0,
author = {L. Escauriaza and G. A. Seregin and V. \v{S}verak},
title = {$L_{3,\infty}$-solutions of the {Navier--Stokes} equations and backward uniqueness},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {211--250},
publisher = {mathdoc},
volume = {58},
number = {2},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2003_58_2_a0/}
}
TY - JOUR
AU - L. Escauriaza
AU - G. A. Seregin
AU - V. Šverak
TI - $L_{3,\infty}$-solutions of the Navier--Stokes equations and backward uniqueness
JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY - 2003
SP - 211
EP - 250
VL - 58
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/RM_2003_58_2_a0/
LA - en
ID - RM_2003_58_2_a0
ER -
%0 Journal Article
%A L. Escauriaza
%A G. A. Seregin
%A V. Šverak
%T $L_{3,\infty}$-solutions of the Navier--Stokes equations and backward uniqueness
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 211-250
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2003_58_2_a0/
%G en
%F RM_2003_58_2_a0
L. Escauriaza; G. A. Seregin; V. Šverak. $L_{3,\infty}$-solutions of the Navier--Stokes equations and backward uniqueness. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 58 (2003) no. 2, pp. 211-250. http://geodesic.mathdoc.fr/item/RM_2003_58_2_a0/