Analyticity of solutions for randomly forced two-dimensional Navier--Stokes equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 785-799

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of randomly forced two-dimensional Navier–Stokes equations with periodic boundary conditions. Under the assumption that the random forcing is analytic in the spatial variables and is a white noise in the time, it is proved that a large class of solutions, which contains all stationary solutions with finite energy, admits analytic continuation to a small complex neighbourhood of the torus. Moreover, a lower bound is obtained for the radius of analyticity in terms of the viscosity $\nu$, and it is shown that the Kolmogorov dissipation scale can be asymptotically estimated below by $\nu^{2+\delta}$ for any $\delta>0$.
@article{RM_2002_57_4_a5,
     author = {A. R. Shirikyan},
     title = {Analyticity of solutions for randomly forced two-dimensional {Navier--Stokes} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {785--799},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/}
}
TY  - JOUR
AU  - A. R. Shirikyan
TI  - Analyticity of solutions for randomly forced two-dimensional Navier--Stokes equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 785
EP  - 799
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/
LA  - en
ID  - RM_2002_57_4_a5
ER  - 
%0 Journal Article
%A A. R. Shirikyan
%T Analyticity of solutions for randomly forced two-dimensional Navier--Stokes equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 785-799
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/
%G en
%F RM_2002_57_4_a5
A. R. Shirikyan. Analyticity of solutions for randomly forced two-dimensional Navier--Stokes equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 785-799. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/