Analyticity of solutions for randomly forced two-dimensional Navier--Stokes equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 785-799
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of randomly forced two-dimensional Navier–Stokes equations with periodic boundary conditions. Under the assumption that the random forcing is analytic in the spatial variables and is a white noise in the time, it is proved that a large class of solutions, which contains all stationary solutions with finite energy, admits analytic continuation to a small complex neighbourhood of the torus. Moreover, a lower bound is obtained for the radius of analyticity in terms of the viscosity $\nu$, and it is shown that the Kolmogorov dissipation scale can be asymptotically estimated below by $\nu^{2+\delta}$ for any
$\delta>0$.
@article{RM_2002_57_4_a5,
author = {A. R. Shirikyan},
title = {Analyticity of solutions for randomly forced two-dimensional {Navier--Stokes} equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {785--799},
publisher = {mathdoc},
volume = {57},
number = {4},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/}
}
TY - JOUR AU - A. R. Shirikyan TI - Analyticity of solutions for randomly forced two-dimensional Navier--Stokes equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 785 EP - 799 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/ LA - en ID - RM_2002_57_4_a5 ER -
%0 Journal Article %A A. R. Shirikyan %T Analyticity of solutions for randomly forced two-dimensional Navier--Stokes equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2002 %P 785-799 %V 57 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/ %G en %F RM_2002_57_4_a5
A. R. Shirikyan. Analyticity of solutions for randomly forced two-dimensional Navier--Stokes equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 785-799. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/