Analyticity of solutions for randomly forced two-dimensional Navier–Stokes equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 785-799 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of randomly forced two-dimensional Navier–Stokes equations with periodic boundary conditions. Under the assumption that the random forcing is analytic in the spatial variables and is a white noise in the time, it is proved that a large class of solutions, which contains all stationary solutions with finite energy, admits analytic continuation to a small complex neighbourhood of the torus. Moreover, a lower bound is obtained for the radius of analyticity in terms of the viscosity $\nu$, and it is shown that the Kolmogorov dissipation scale can be asymptotically estimated below by $\nu^{2+\delta}$ for any $\delta>0$.
@article{RM_2002_57_4_a5,
     author = {A. R. Shirikyan},
     title = {Analyticity of solutions for randomly forced two-dimensional {Navier{\textendash}Stokes} equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {785--799},
     year = {2002},
     volume = {57},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/}
}
TY  - JOUR
AU  - A. R. Shirikyan
TI  - Analyticity of solutions for randomly forced two-dimensional Navier–Stokes equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 785
EP  - 799
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/
LA  - en
ID  - RM_2002_57_4_a5
ER  - 
%0 Journal Article
%A A. R. Shirikyan
%T Analyticity of solutions for randomly forced two-dimensional Navier–Stokes equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 785-799
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/
%G en
%F RM_2002_57_4_a5
A. R. Shirikyan. Analyticity of solutions for randomly forced two-dimensional Navier–Stokes equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 4, pp. 785-799. http://geodesic.mathdoc.fr/item/RM_2002_57_4_a5/

[1] J. Bricmont, A. Kupiainen, R. Lefevere, “Probabilistic estimates for the two-dimensional stochastic Navier–Stokes equations”, J. Statist. Phys., 100:3–4 (2000), 743–756 | DOI | MR | Zbl

[2] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[3] G. Da Prato, J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[4] F. Flandoli, D. Gatarek, “Martingale and stationary solutions for stochastic Navier–Stokes equations”, Probab. Theory Related Fields, 102:3 (1995), 367–391 | DOI | MR | Zbl

[5] C. Foias, R. Temam, “Gevrey class regularity for the solutions of the Navier–Stokes equations”, J. Funct. Anal., 87:2 (1989), 359–369 | DOI | MR | Zbl

[6] U. Frish, Turbulentnost. Nasledie A. N. Kolmogorova, Fazis, M., 1998

[7] G. Gallavotti, Foundations of Fluid Dynamics, Springer-Verlag, Berlin, 2001 | MR | Zbl

[8] Y. Giga, “Time and spatial analyticity of solutions of the Navier–Stokes equations”, Comm. Partial Differential Equations, 8:8 (1983), 929–948 | DOI | MR | Zbl

[9] W. D. Henshaw, H.-O. Kreiss, L. G. Reyna, “Smallest scale estimates for the Navier–Stokes equations for incompressible fluids”, Arch. Ration. Mech. Anal., 112:1 (1990), 21–44 | DOI | MR | Zbl

[10] G. Komatsu, “Global analyticity up to the boundary of solutions of the Navier–Stokes equation”, Comm. Pure Appl. Math., 33:4 (1980), 545–566 | DOI | MR | Zbl

[11] N. V. Krylov, Introduction to the Theory of Diffusion Processes, Transl. Math. Monographs, 142, Amer. Math. Soc., Providence, RI, 1995 | MR

[12] I. Kukavica, “On the dissipative scale for the Navier–Stokes equation”, Indiana Univ. Math. J., 48:3 (1999), 1057–1081 | DOI | MR | Zbl

[13] S. B. Kuksin, “Spectral properties of solutions for nonlinear PDEs in the turbulent regime”, Geom. Funct. Anal., 9:1 (1999), 141–184 | DOI | MR | Zbl

[14] S. B. Kuksin, “Stokhasticheskoe nelineinoe uravnenie Shredingera. I. Apriornye otsenki”, Tr. MIAN, 225, 1999, 232–256 | MR | Zbl

[15] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[16] K. Masuda, “On the analyticity and the unique continuation theorem for solutions of the Navier–Stokes equations”, Proc. Japan Acad., 43 (1967), 827–832 | DOI | MR | Zbl

[17] J. C. Mattingly, The Stochastic Navier–Stokes Equation: Energy Estimates and Phase Space Contraction, Ph.D. thesis, Princeton Univ., Princeton, 1998

[18] M. I. Vishik, A. V. Fursikov, Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR

[19] M. I. Vishik, A. I. Komech, A. V. Fursikov, “Nekotorye matematicheskie zadachi statisticheskoi gidromekhaniki”, UMN, 34:5 (1979), 135–210 | MR | Zbl