Pad\'e approximants and efficient analytic continuation of a~power series
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 1, pp. 43-141
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This survey reflects the current state of the theory of Padé approximants, that is, best rational approximations of power series. The main focus is on the so-called inverse problems of this theory, in which one must make deductions about analytic continuation of a given power series on the basis of the known asymptotic behaviour of the poles of some sequence of Padé approximants of this series. Row and diagonal sequences are studied from this point of view. Gonchar's and Rakhmanov's fundamental results of inverse nature are presented along
with results of the author.
			
            
            
            
          
        
      @article{RM_2002_57_1_a1,
     author = {S. P. Suetin},
     title = {Pad\'e approximants and efficient analytic continuation of a~power series},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {43--141},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_1_a1/}
}
                      
                      
                    TY - JOUR AU - S. P. Suetin TI - Pad\'e approximants and efficient analytic continuation of a~power series JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 43 EP - 141 VL - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2002_57_1_a1/ LA - en ID - RM_2002_57_1_a1 ER -
S. P. Suetin. Pad\'e approximants and efficient analytic continuation of a~power series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 1, pp. 43-141. http://geodesic.mathdoc.fr/item/RM_2002_57_1_a1/
