Real submanifolds in complex space: polynomial models, automorphisms, and classification problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 1, pp. 1-41

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey of results on the local theory of real submanifolds of a complex space. Most of the results included here were obtained in Vitushkin's seminar at Moscow State University over the last fifteen years. The most important achievement is a technique for computing automorphisms, invariants, and classifications of real submanifolds, which includes as a main step the construction of a “good” model surface (an analogue of an osculating paraboloid in classical differential geometry).
@article{RM_2002_57_1_a0,
     author = {V. K. Beloshapka},
     title = {Real submanifolds in complex space: polynomial models, automorphisms, and classification problems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--41},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2002_57_1_a0/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Real submanifolds in complex space: polynomial models, automorphisms, and classification problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 1
EP  - 41
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2002_57_1_a0/
LA  - en
ID  - RM_2002_57_1_a0
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Real submanifolds in complex space: polynomial models, automorphisms, and classification problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 1-41
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2002_57_1_a0/
%G en
%F RM_2002_57_1_a0
V. K. Beloshapka. Real submanifolds in complex space: polynomial models, automorphisms, and classification problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 57 (2002) no. 1, pp. 1-41. http://geodesic.mathdoc.fr/item/RM_2002_57_1_a0/