Hyperelliptic tangential covers and finite-gap potentials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 6, pp. 1107-1151

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of finite-gap potentials that can be expressed in terms of elliptic functions. New elliptic finite-gap potentials and new elliptic solitons of the KdV equation are found. A step is taken towards the study of relationships connecting elliptic KdV solitons, elliptic finite-gap potentials, and the Jacobians of the associated spectral curves.
@article{RM_2001_56_6_a2,
     author = {A. Treibich},
     title = {Hyperelliptic tangential covers and finite-gap potentials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1107--1151},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2001_56_6_a2/}
}
TY  - JOUR
AU  - A. Treibich
TI  - Hyperelliptic tangential covers and finite-gap potentials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 1107
EP  - 1151
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2001_56_6_a2/
LA  - en
ID  - RM_2001_56_6_a2
ER  - 
%0 Journal Article
%A A. Treibich
%T Hyperelliptic tangential covers and finite-gap potentials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 1107-1151
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2001_56_6_a2/
%G en
%F RM_2001_56_6_a2
A. Treibich. Hyperelliptic tangential covers and finite-gap potentials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 6, pp. 1107-1151. http://geodesic.mathdoc.fr/item/RM_2001_56_6_a2/