Geometric properties of eigenfunctions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 6, pp. 1085-1105
Voir la notice de l'article provenant de la source Math-Net.Ru
We give an overview of some new and old results on geometric properties
of eigenfunctions of Laplacians on Riemannian manifolds. We discuss
properties of nodal sets and critical points, the number of nodal domains,
and asymptotic properties of eigenfunctions in the high-energy
limit (such as weak * limits, the rate of growth of $L^p$ norms, and
relationships between positive and negative parts of eigenfunctions).
@article{RM_2001_56_6_a1,
author = {D. Jakobson and N. S. Nadirashvili and J. Toth},
title = {Geometric properties of eigenfunctions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1085--1105},
publisher = {mathdoc},
volume = {56},
number = {6},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2001_56_6_a1/}
}
TY - JOUR AU - D. Jakobson AU - N. S. Nadirashvili AU - J. Toth TI - Geometric properties of eigenfunctions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 1085 EP - 1105 VL - 56 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2001_56_6_a1/ LA - en ID - RM_2001_56_6_a1 ER -
D. Jakobson; N. S. Nadirashvili; J. Toth. Geometric properties of eigenfunctions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 6, pp. 1085-1105. http://geodesic.mathdoc.fr/item/RM_2001_56_6_a1/