Splitting of separatrices: perturbation theory and exponential smallness
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 3, pp. 499-558
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This is a survey of the main results related to separatrix splitting for area-preserving maps and
Hamiltonian systems with one and a half degrees of freedom. Special attention is paid to problems in which the separatrix splitting is exponentially small with respect to the perturbation parameter.
			
            
            
            
          
        
      @article{RM_2001_56_3_a1,
     author = {V. G. Gelfreich and V. F. Lazutkin},
     title = {Splitting of separatrices: perturbation theory and exponential smallness},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {499--558},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2001_56_3_a1/}
}
                      
                      
                    TY - JOUR AU - V. G. Gelfreich AU - V. F. Lazutkin TI - Splitting of separatrices: perturbation theory and exponential smallness JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 499 EP - 558 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2001_56_3_a1/ LA - en ID - RM_2001_56_3_a1 ER -
%0 Journal Article %A V. G. Gelfreich %A V. F. Lazutkin %T Splitting of separatrices: perturbation theory and exponential smallness %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2001 %P 499-558 %V 56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2001_56_3_a1/ %G en %F RM_2001_56_3_a1
V. G. Gelfreich; V. F. Lazutkin. Splitting of separatrices: perturbation theory and exponential smallness. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 3, pp. 499-558. http://geodesic.mathdoc.fr/item/RM_2001_56_3_a1/
