Equivariant Freudenthal theorem and equivariant $n$-movability
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 156-157

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_2001_56_1_a7,
     author = {P. S. Gevorgyan},
     title = {Equivariant {Freudenthal} theorem and equivariant $n$-movability},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {156--157},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2001_56_1_a7/}
}
TY  - JOUR
AU  - P. S. Gevorgyan
TI  - Equivariant Freudenthal theorem and equivariant $n$-movability
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 156
EP  - 157
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2001_56_1_a7/
LA  - en
ID  - RM_2001_56_1_a7
ER  - 
%0 Journal Article
%A P. S. Gevorgyan
%T Equivariant Freudenthal theorem and equivariant $n$-movability
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 156-157
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2001_56_1_a7/
%G en
%F RM_2001_56_1_a7
P. S. Gevorgyan. Equivariant Freudenthal theorem and equivariant $n$-movability. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 156-157. http://geodesic.mathdoc.fr/item/RM_2001_56_1_a7/