Equivariant Freudenthal theorem and equivariant $n$-movability
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 156-157
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_2001_56_1_a7,
     author = {P. S. Gevorgyan},
     title = {Equivariant {Freudenthal} theorem and equivariant $n$-movability},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {156--157},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2001_56_1_a7/}
}
                      
                      
                    TY - JOUR AU - P. S. Gevorgyan TI - Equivariant Freudenthal theorem and equivariant $n$-movability JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 156 EP - 157 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2001_56_1_a7/ LA - en ID - RM_2001_56_1_a7 ER -
P. S. Gevorgyan. Equivariant Freudenthal theorem and equivariant $n$-movability. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 156-157. http://geodesic.mathdoc.fr/item/RM_2001_56_1_a7/
