Borsuk's problem and the chromatic numbers of some metric spaces
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 103-139
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A detailed survey is given of various results pertaining to two well-known problems of combinatorial geometry: Borsuk's problem on partitions of an arbitrary bounded $d$-dimensional set of non-zero diameter into parts of smaller diameter, and the problem of finding chromatic numbers of some metric spaces. Furthermore, a general method is described for obtaining good lower bounds for the minimum number of parts of smaller diameter into which an arbitrary non-singleton set of dimension $d$ can be divided as well as for the chromatic numbers of various metric spaces, in particular, $\mathbb R^d$ and $\mathbb Q^d$. Finally, some new lower bounds are proved for chromatic numbers in low dimensions, and new natural generalizations of the notion of chromatic number are proposed.
			
            
            
            
          
        
      @article{RM_2001_56_1_a2,
     author = {A. M. Raigorodskii},
     title = {Borsuk's problem and the chromatic numbers of some metric spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {103--139},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2001_56_1_a2/}
}
                      
                      
                    TY - JOUR AU - A. M. Raigorodskii TI - Borsuk's problem and the chromatic numbers of some metric spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 103 EP - 139 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2001_56_1_a2/ LA - en ID - RM_2001_56_1_a2 ER -
A. M. Raigorodskii. Borsuk's problem and the chromatic numbers of some metric spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 103-139. http://geodesic.mathdoc.fr/item/RM_2001_56_1_a2/
