Borsuk's problem and the chromatic numbers of some metric spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 103-139

Voir la notice de l'article provenant de la source Math-Net.Ru

A detailed survey is given of various results pertaining to two well-known problems of combinatorial geometry: Borsuk's problem on partitions of an arbitrary bounded $d$-dimensional set of non-zero diameter into parts of smaller diameter, and the problem of finding chromatic numbers of some metric spaces. Furthermore, a general method is described for obtaining good lower bounds for the minimum number of parts of smaller diameter into which an arbitrary non-singleton set of dimension $d$ can be divided as well as for the chromatic numbers of various metric spaces, in particular, $\mathbb R^d$ and $\mathbb Q^d$. Finally, some new lower bounds are proved for chromatic numbers in low dimensions, and new natural generalizations of the notion of chromatic number are proposed.
@article{RM_2001_56_1_a2,
     author = {A. M. Raigorodskii},
     title = {Borsuk's problem and the chromatic numbers of some metric spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {103--139},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2001_56_1_a2/}
}
TY  - JOUR
AU  - A. M. Raigorodskii
TI  - Borsuk's problem and the chromatic numbers of some metric spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 103
EP  - 139
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2001_56_1_a2/
LA  - en
ID  - RM_2001_56_1_a2
ER  - 
%0 Journal Article
%A A. M. Raigorodskii
%T Borsuk's problem and the chromatic numbers of some metric spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 103-139
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2001_56_1_a2/
%G en
%F RM_2001_56_1_a2
A. M. Raigorodskii. Borsuk's problem and the chromatic numbers of some metric spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 103-139. http://geodesic.mathdoc.fr/item/RM_2001_56_1_a2/