Exactly integrable hyperbolic equations of Liouville type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 61-101

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey of the authors' results concerning non-linear hyperbolic equations of Liouville type. The definition is based on the condition that the chain of Laplace invariants of the linearized equation be two-way finite. New results include a procedure for finding the general solution and a solution of the classification problem for Liouville type equations.
@article{RM_2001_56_1_a1,
     author = {A. V. Zhiber and V. V. Sokolov},
     title = {Exactly integrable hyperbolic equations of {Liouville} type},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {61--101},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2001_56_1_a1/}
}
TY  - JOUR
AU  - A. V. Zhiber
AU  - V. V. Sokolov
TI  - Exactly integrable hyperbolic equations of Liouville type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 61
EP  - 101
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2001_56_1_a1/
LA  - en
ID  - RM_2001_56_1_a1
ER  - 
%0 Journal Article
%A A. V. Zhiber
%A V. V. Sokolov
%T Exactly integrable hyperbolic equations of Liouville type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 61-101
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2001_56_1_a1/
%G en
%F RM_2001_56_1_a1
A. V. Zhiber; V. V. Sokolov. Exactly integrable hyperbolic equations of Liouville type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 61-101. http://geodesic.mathdoc.fr/item/RM_2001_56_1_a1/