Exactly integrable hyperbolic equations of Liouville type
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 61-101
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This is a survey of the authors' results concerning non-linear hyperbolic equations of Liouville type. The definition is based on the condition that the chain of Laplace invariants of the linearized equation be two-way finite. New results include a procedure for finding the general
solution and a solution of the classification problem for Liouville type equations.
			
            
            
            
          
        
      @article{RM_2001_56_1_a1,
     author = {A. V. Zhiber and V. V. Sokolov},
     title = {Exactly integrable hyperbolic equations of {Liouville} type},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {61--101},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2001_56_1_a1/}
}
                      
                      
                    TY - JOUR AU - A. V. Zhiber AU - V. V. Sokolov TI - Exactly integrable hyperbolic equations of Liouville type JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 61 EP - 101 VL - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2001_56_1_a1/ LA - en ID - RM_2001_56_1_a1 ER -
A. V. Zhiber; V. V. Sokolov. Exactly integrable hyperbolic equations of Liouville type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 56 (2001) no. 1, pp. 61-101. http://geodesic.mathdoc.fr/item/RM_2001_56_1_a1/
