Exact global plasma equilibria
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 3, pp. 463-500

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact global axisymmetric and helically symmetric plasma equilibria are derived. These two families of exact solutions of the plasma equilibrium equations are not translation-invariant, depend on arbitrarily many parameters, and contain special $z$-invariant equilibria. All plasma equilibria constructed are smooth and localized in the sense that they have finite magnetic energy in each layer $c_1$. Furthermore, these exact solutions provide counterexamples to Parker's well-known theorem.
@article{RM_2000_55_3_a1,
     author = {O. I. Bogoyavlenskii},
     title = {Exact global plasma equilibria},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {463--500},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2000_55_3_a1/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Exact global plasma equilibria
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 463
EP  - 500
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2000_55_3_a1/
LA  - en
ID  - RM_2000_55_3_a1
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Exact global plasma equilibria
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 463-500
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2000_55_3_a1/
%G en
%F RM_2000_55_3_a1
O. I. Bogoyavlenskii. Exact global plasma equilibria. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 3, pp. 463-500. http://geodesic.mathdoc.fr/item/RM_2000_55_3_a1/