The buffer property in resonance systems of non-linear hyperbolic equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 2, pp. 297-321

Voir la notice de l'article provenant de la source Math-Net.Ru

We study hyperbolic boundary-value problems for systems of telegraph equations with non-linear boundary conditions at the endpoints of a finite interval. The buffer property is established, that is, the existence of an arbitrary given finite number of stable time-periodic solutions for appropriately chosen parameter values, for this class of systems. For the case of a resonance spectrum of eigenfrequencies, the study of self-induced oscillations in various systems is shown to lead to one of the following two model problems, which are a kind of invariant: \begin{gather*} \frac{\partial^2w}{\partial t\partial x}=w+\lambda(1-w^2)\frac{\partial w}{\partial x}\,, \qquad w(t,x+1)\equiv-w(t,x), \qquad \lambda>0; \\ \frac{\partial w}{\partial t}+a^2\frac{\partial^3w}{\partial x^3}=w-w^3, \qquad w(t,x+1)\equiv-w(t,x), \qquad a\ne 0. \end{gather*} Informative examples from radiophysics are considered.
@article{RM_2000_55_2_a1,
     author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
     title = {The buffer property in resonance systems of non-linear hyperbolic equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {297--321},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2000_55_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
AU  - N. Kh. Rozov
TI  - The buffer property in resonance systems of non-linear hyperbolic equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 297
EP  - 321
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2000_55_2_a1/
LA  - en
ID  - RM_2000_55_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%A N. Kh. Rozov
%T The buffer property in resonance systems of non-linear hyperbolic equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 297-321
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2000_55_2_a1/
%G en
%F RM_2000_55_2_a1
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. The buffer property in resonance systems of non-linear hyperbolic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 2, pp. 297-321. http://geodesic.mathdoc.fr/item/RM_2000_55_2_a1/