The buffer property in resonance systems of non-linear hyperbolic equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 2, pp. 297-321
Voir la notice de l'article provenant de la source Math-Net.Ru
We study hyperbolic boundary-value problems for systems of telegraph equations with non-linear boundary conditions at the endpoints of a finite interval. The buffer property is established, that is, the existence of an arbitrary given finite number of stable time-periodic solutions for appropriately chosen parameter values, for this class of systems. For the case of a resonance spectrum of eigenfrequencies, the study of self-induced oscillations in various systems is shown to lead to one of the following two model problems, which are a kind of invariant:
\begin{gather*}
\frac{\partial^2w}{\partial t\partial x}=w+\lambda(1-w^2)\frac{\partial w}{\partial x}\,, \qquad
w(t,x+1)\equiv-w(t,x), \qquad \lambda>0;
\\
\frac{\partial w}{\partial t}+a^2\frac{\partial^3w}{\partial x^3}=w-w^3,
\qquad
w(t,x+1)\equiv-w(t,x), \qquad a\ne 0.
\end{gather*}
Informative examples from radiophysics are considered.
@article{RM_2000_55_2_a1,
author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
title = {The buffer property in resonance systems of non-linear hyperbolic equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {297--321},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2000_55_2_a1/}
}
TY - JOUR AU - A. Yu. Kolesov AU - E. F. Mishchenko AU - N. Kh. Rozov TI - The buffer property in resonance systems of non-linear hyperbolic equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2000 SP - 297 EP - 321 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2000_55_2_a1/ LA - en ID - RM_2000_55_2_a1 ER -
%0 Journal Article %A A. Yu. Kolesov %A E. F. Mishchenko %A N. Kh. Rozov %T The buffer property in resonance systems of non-linear hyperbolic equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2000 %P 297-321 %V 55 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_2000_55_2_a1/ %G en %F RM_2000_55_2_a1
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. The buffer property in resonance systems of non-linear hyperbolic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 2, pp. 297-321. http://geodesic.mathdoc.fr/item/RM_2000_55_2_a1/