Attractors of non-linear Hamiltonian one-dimensional wave equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 43-92
Voir la notice de l'article provenant de la source Math-Net.Ru
A theory is constructed for attractors of all finite-energy solutions of conservative one-dimensional wave equations on the whole real line. The attractor of a non-degenerate (that is, generic) equation is the set of all stationary solutions. Each finite-energy solution converges as $t\to\pm\infty$ to this attractor in the Frechet topology determined by local energy seminorms. The attraction is caused by energy dissipation at infinity. Our results provide a mathematical model of Bohr transitions (“quantum jumps”) between stationary states in quantum systems.
@article{RM_2000_55_1_a1,
author = {A. I. Komech},
title = {Attractors of non-linear {Hamiltonian} one-dimensional wave equations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {43--92},
publisher = {mathdoc},
volume = {55},
number = {1},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2000_55_1_a1/}
}
TY - JOUR AU - A. I. Komech TI - Attractors of non-linear Hamiltonian one-dimensional wave equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2000 SP - 43 EP - 92 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_2000_55_1_a1/ LA - en ID - RM_2000_55_1_a1 ER -
A. I. Komech. Attractors of non-linear Hamiltonian one-dimensional wave equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 43-92. http://geodesic.mathdoc.fr/item/RM_2000_55_1_a1/