Attractors of non-linear Hamiltonian one-dimensional wave equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 43-92

Voir la notice de l'article provenant de la source Math-Net.Ru

A theory is constructed for attractors of all finite-energy solutions of conservative one-dimensional wave equations on the whole real line. The attractor of a non-degenerate (that is, generic) equation is the set of all stationary solutions. Each finite-energy solution converges as $t\to\pm\infty$ to this attractor in the Frechet topology determined by local energy seminorms. The attraction is caused by energy dissipation at infinity. Our results provide a mathematical model of Bohr transitions (“quantum jumps”) between stationary states in quantum systems.
@article{RM_2000_55_1_a1,
     author = {A. I. Komech},
     title = {Attractors of non-linear {Hamiltonian} one-dimensional wave equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {43--92},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2000_55_1_a1/}
}
TY  - JOUR
AU  - A. I. Komech
TI  - Attractors of non-linear Hamiltonian one-dimensional wave equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 43
EP  - 92
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2000_55_1_a1/
LA  - en
ID  - RM_2000_55_1_a1
ER  - 
%0 Journal Article
%A A. I. Komech
%T Attractors of non-linear Hamiltonian one-dimensional wave equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 43-92
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2000_55_1_a1/
%G en
%F RM_2000_55_1_a1
A. I. Komech. Attractors of non-linear Hamiltonian one-dimensional wave equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 55 (2000) no. 1, pp. 43-92. http://geodesic.mathdoc.fr/item/RM_2000_55_1_a1/