Complex analysis and differential topology on complex surfaces
    
    
  
  
  
      
      
      
        
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 4, pp. 729-752
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the paper, the relationship between the theory of holomorphic functions on two-dimensional complex manifolds and their differential topology is described. The basic fact, established by using the Seiberg–Witten invariants, is that the topological characteristics of embedded real surfaces in Stein surfaces satisfy adjunction-type inequalities. A version of Gromov's $h$-principle for totally real embeddings shows that these topological inequalities are sharp. In some cases, these results can be used to describe the envelopes of holomorphy of embedded real surfaces in a given complex surface. Our examples include real surfaces in $\mathbb C^2$ and $\mathbb{CP}^2$ and in products of $\mathbb{CP}^1$ with non-compact Riemann surfaces. A similar technique can be applied to the study of geometric properties of strictly pseudoconvex domains in dimension two.
			
            
            
            
          
        
      @article{RM_1999_54_4_a1,
     author = {S. Yu. Nemirovski},
     title = {Complex analysis and differential topology on complex surfaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {729--752},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1999_54_4_a1/}
}
                      
                      
                    TY - JOUR AU - S. Yu. Nemirovski TI - Complex analysis and differential topology on complex surfaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1999 SP - 729 EP - 752 VL - 54 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1999_54_4_a1/ LA - en ID - RM_1999_54_4_a1 ER -
S. Yu. Nemirovski. Complex analysis and differential topology on complex surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 54 (1999) no. 4, pp. 729-752. http://geodesic.mathdoc.fr/item/RM_1999_54_4_a1/
