On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 38 (1983) no. 5, pp. 146-147
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{RM_1983_38_5_a12,
author = {E. D. Kulanin},
title = {On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2<q<\infty$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {146--147},
publisher = {mathdoc},
volume = {38},
number = {5},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1983_38_5_a12/}
}
TY - JOUR AU - E. D. Kulanin TI - On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2 JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1983 SP - 146 EP - 147 VL - 38 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1983_38_5_a12/ LA - en ID - RM_1983_38_5_a12 ER -
%0 Journal Article %A E. D. Kulanin %T On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2 %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1983 %P 146-147 %V 38 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/RM_1983_38_5_a12/ %G en %F RM_1983_38_5_a12
E. D. Kulanin. On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2