On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 38 (1983) no. 5, pp. 146-147

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_1983_38_5_a12,
     author = {E. D. Kulanin},
     title = {On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2<q<\infty$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {146--147},
     publisher = {mathdoc},
     volume = {38},
     number = {5},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1983_38_5_a12/}
}
TY  - JOUR
AU  - E. D. Kulanin
TI  - On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1983
SP  - 146
EP  - 147
VL  - 38
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1983_38_5_a12/
LA  - en
ID  - RM_1983_38_5_a12
ER  - 
%0 Journal Article
%A E. D. Kulanin
%T On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1983
%P 146-147
%V 38
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1983_38_5_a12/
%G en
%F RM_1983_38_5_a12
E. D. Kulanin. On the diameters of a class of functions of bounded variation in the space $L^q(0,1)$, $2