Every metrizable space can be embedded in a metrizable field
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 38 (1983) no. 3, pp. 157-158

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{RM_1983_38_3_a12,
     author = {V. V. Uspenskii},
     title = {Every metrizable space can be embedded in a metrizable field},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {157--158},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1983_38_3_a12/}
}
TY  - JOUR
AU  - V. V. Uspenskii
TI  - Every metrizable space can be embedded in a metrizable field
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1983
SP  - 157
EP  - 158
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1983_38_3_a12/
LA  - en
ID  - RM_1983_38_3_a12
ER  - 
%0 Journal Article
%A V. V. Uspenskii
%T Every metrizable space can be embedded in a metrizable field
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1983
%P 157-158
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1983_38_3_a12/
%G en
%F RM_1983_38_3_a12
V. V. Uspenskii. Every metrizable space can be embedded in a metrizable field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 38 (1983) no. 3, pp. 157-158. http://geodesic.mathdoc.fr/item/RM_1983_38_3_a12/