Relations among the invariants of topological groups and their subspaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 35 (1980) no. 3, pp. 1-23

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study topological properties of topological groups and, first of all, cardinal invariants of topological groups. Many of the relevant questions are subsumed under the following general scheme: how does the compatibility of the topology with the group structure reflect on the relations among the invariants of this topology? We use the notation and terminology of $ \lbrack 4\rbrack$. Cardinal invariants of a topological group are understood to mean those of its underlying space, which is assumed throughout to be completely regular and $ T_1$. Proofs are given in condensed form or omitted altogether.
@article{RM_1980_35_3_a0,
     author = {A. V. Arkhangel'skii},
     title = {Relations among the invariants of topological groups and their subspaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1980_35_3_a0/}
}
TY  - JOUR
AU  - A. V. Arkhangel'skii
TI  - Relations among the invariants of topological groups and their subspaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1980
SP  - 1
EP  - 23
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1980_35_3_a0/
LA  - en
ID  - RM_1980_35_3_a0
ER  - 
%0 Journal Article
%A A. V. Arkhangel'skii
%T Relations among the invariants of topological groups and their subspaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1980
%P 1-23
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1980_35_3_a0/
%G en
%F RM_1980_35_3_a0
A. V. Arkhangel'skii. Relations among the invariants of topological groups and their subspaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 35 (1980) no. 3, pp. 1-23. http://geodesic.mathdoc.fr/item/RM_1980_35_3_a0/