Homogeneous models in~general relativity and gas dynamics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5, pp. 31-48
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper begins with a short survey of results on non-trivial models (that is, those that are not integrable analytically) in general relativity and gas dynamics. The investigation of these models is carried out by the methods of the qualitative theory of many-dimensional dynamical systems, using geometrical and topological ideas. The first section deals with the results of research on the evolution of homogeneous cosmological models with a hydrodynamic energy tensor – the impulse about a singularity. In the second section similar models are applied to the study of the complex oscillating regimes of a classical ideal compressible fluid. The Appendix contains new, unpublished results due to one of the authors, describing stochastic perturbation of a completely integrable Toda chain.
@article{RM_1976_31_5_a2,
author = {O. I. Bogoyavlenskii and S. P. Novikov},
title = {Homogeneous models in~general relativity and gas dynamics},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {31--48},
publisher = {mathdoc},
volume = {31},
number = {5},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1976_31_5_a2/}
}
TY - JOUR AU - O. I. Bogoyavlenskii AU - S. P. Novikov TI - Homogeneous models in~general relativity and gas dynamics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1976 SP - 31 EP - 48 VL - 31 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1976_31_5_a2/ LA - en ID - RM_1976_31_5_a2 ER -
O. I. Bogoyavlenskii; S. P. Novikov. Homogeneous models in~general relativity and gas dynamics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5, pp. 31-48. http://geodesic.mathdoc.fr/item/RM_1976_31_5_a2/