On~Aleksandrov's obstruction theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5, pp. 192-197
Voir la notice de l'article provenant de la source Math-Net.Ru
The following two results ate proved.
Theorem 1. {\it Let $X$ be a subspace of a locally compact metric space with $\dim_{\mathscr G}X=p$, and $A$ the subset consisting of all points $a\in X$ such that $H^p(X,X\setminus U;\mathscr G)\ne 0$ for every sufficiently small open ball $U$ with centre at $a$. Then $\dim_{\mathscr G}A=p$}.
Theorem 2. {\it Let $X$ be a metric space, $\dim_{\mathscr G}X=p$, and $Y$ the subspace of $X$ consisting of all points $y\in X$ that have a basis of open neighbourhoods $\mathscr B(y)$ точки $y$ such that for each $U\in \mathscr B(y)$ the group $H^p(X,X\setminus U;\mathscr G)$ is not trivial. Then $\dim_{\mathscr G}Y=p$}.
@article{RM_1976_31_5_a14,
author = {I. A. Shvedov},
title = {On~Aleksandrov's obstruction theorem},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {192--197},
publisher = {mathdoc},
volume = {31},
number = {5},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1976_31_5_a14/}
}
I. A. Shvedov. On~Aleksandrov's obstruction theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5, pp. 192-197. http://geodesic.mathdoc.fr/item/RM_1976_31_5_a14/