On~Aleksandrov's obstruction theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5, pp. 192-197

Voir la notice de l'article provenant de la source Math-Net.Ru

The following two results ate proved. Theorem 1. {\it Let $X$ be a subspace of a locally compact metric space with $\dim_{\mathscr G}X=p$, and $A$ the subset consisting of all points $a\in X$ such that $H^p(X,X\setminus U;\mathscr G)\ne 0$ for every sufficiently small open ball $U$ with centre at $a$. Then $\dim_{\mathscr G}A=p$}. Theorem 2. {\it Let $X$ be a metric space, $\dim_{\mathscr G}X=p$, and $Y$ the subspace of $X$ consisting of all points $y\in X$ that have a basis of open neighbourhoods $\mathscr B(y)$ точки $y$ such that for each $U\in \mathscr B(y)$ the group $H^p(X,X\setminus U;\mathscr G)$ is not trivial. Then $\dim_{\mathscr G}Y=p$}.
@article{RM_1976_31_5_a14,
     author = {I. A. Shvedov},
     title = {On~Aleksandrov's obstruction theorem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {192--197},
     publisher = {mathdoc},
     volume = {31},
     number = {5},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1976_31_5_a14/}
}
TY  - JOUR
AU  - I. A. Shvedov
TI  - On~Aleksandrov's obstruction theorem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1976
SP  - 192
EP  - 197
VL  - 31
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1976_31_5_a14/
LA  - en
ID  - RM_1976_31_5_a14
ER  - 
%0 Journal Article
%A I. A. Shvedov
%T On~Aleksandrov's obstruction theorem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1976
%P 192-197
%V 31
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1976_31_5_a14/
%G en
%F RM_1976_31_5_a14
I. A. Shvedov. On~Aleksandrov's obstruction theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5, pp. 192-197. http://geodesic.mathdoc.fr/item/RM_1976_31_5_a14/