On~the~dimension of~spaces with a~compact group of~transformations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5, pp. 128-137

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is as follows: {\it If a compact group $K$ acts continuously on a normal space $X$ so that the orbit space $X/K$ is metrizable, then $\dim X=\operatorname{Ind}X$}. Particular cases of spaces on which a compact group acts continuously with a metrizable orbit space are locally compact groups and their quotient spaces and also almost metrizable (in particular, Čech-complete) groups [5] and their quotient spaces. All the spaces we consider are assumed to be Hausdorff, and $X$ completely regular. All subgroups that occur are closed and all maps are continuous.
@article{RM_1976_31_5_a11,
     author = {B. A. Pasynkov},
     title = {On~the~dimension of~spaces with a~compact group of~transformations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {128--137},
     publisher = {mathdoc},
     volume = {31},
     number = {5},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1976_31_5_a11/}
}
TY  - JOUR
AU  - B. A. Pasynkov
TI  - On~the~dimension of~spaces with a~compact group of~transformations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1976
SP  - 128
EP  - 137
VL  - 31
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1976_31_5_a11/
LA  - en
ID  - RM_1976_31_5_a11
ER  - 
%0 Journal Article
%A B. A. Pasynkov
%T On~the~dimension of~spaces with a~compact group of~transformations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1976
%P 128-137
%V 31
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1976_31_5_a11/
%G en
%F RM_1976_31_5_a11
B. A. Pasynkov. On~the~dimension of~spaces with a~compact group of~transformations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5, pp. 128-137. http://geodesic.mathdoc.fr/item/RM_1976_31_5_a11/