On~the~dimension of~spaces with a~compact group of~transformations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5, pp. 128-137
Voir la notice de l'article provenant de la source Math-Net.Ru
The main result of this paper is as follows:
{\it If a compact group $K$ acts continuously on a normal space $X$ so that the orbit space $X/K$ is metrizable, then $\dim X=\operatorname{Ind}X$}.
Particular cases of spaces on which a compact group acts continuously with a metrizable orbit space are locally compact groups and their quotient spaces and also almost metrizable (in particular, Čech-complete) groups [5] and their quotient spaces.
All the spaces we consider are assumed to be Hausdorff, and $X$ completely regular. All subgroups that occur are closed and all maps are continuous.
@article{RM_1976_31_5_a11,
author = {B. A. Pasynkov},
title = {On~the~dimension of~spaces with a~compact group of~transformations},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {128--137},
publisher = {mathdoc},
volume = {31},
number = {5},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1976_31_5_a11/}
}
TY - JOUR AU - B. A. Pasynkov TI - On~the~dimension of~spaces with a~compact group of~transformations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1976 SP - 128 EP - 137 VL - 31 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1976_31_5_a11/ LA - en ID - RM_1976_31_5_a11 ER -
B. A. Pasynkov. On~the~dimension of~spaces with a~compact group of~transformations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5, pp. 128-137. http://geodesic.mathdoc.fr/item/RM_1976_31_5_a11/