A~converse to~the~principle of~contracting maps
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 4, pp. 175-204

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we give an account of several versions of a converse to the principle of contracting maps. More exactly, we answer the question: under what conditions on an operator mapping a complete metric space into itself is there an equivalent metric in which the operator is contracting? We also consider the more general problem about the existence of an equivalent metric in which families and semigroups of operators are contracting, and we indicate connections of this problem with the theory of the stability of motion. A similar problem (about the existence of an equivalent norm) can be raised in the case of a Banach space.
@article{RM_1976_31_4_a5,
     author = {V. I. Opoitsev},
     title = {A~converse to~the~principle of~contracting maps},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {175--204},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1976_31_4_a5/}
}
TY  - JOUR
AU  - V. I. Opoitsev
TI  - A~converse to~the~principle of~contracting maps
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1976
SP  - 175
EP  - 204
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1976_31_4_a5/
LA  - en
ID  - RM_1976_31_4_a5
ER  - 
%0 Journal Article
%A V. I. Opoitsev
%T A~converse to~the~principle of~contracting maps
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1976
%P 175-204
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1976_31_4_a5/
%G en
%F RM_1976_31_4_a5
V. I. Opoitsev. A~converse to~the~principle of~contracting maps. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 4, pp. 175-204. http://geodesic.mathdoc.fr/item/RM_1976_31_4_a5/