Non-Archimedean integration and Jacquet--Langlands $p$-adic $L$-functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 1, pp. 5-57

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1964 Kubota and Leopoldt constructed a $p$-adic analogue of the Riemann zeta-function. Since then the class of $L$-functions with $p$-adic variants has continually been enlarged. At the beginning of the article we survey work in this direction, using the technique of the $p$-adic Mellin transform. Then we show how to apply it to the construction of non-Archimedean measures and integrals corresponding to parabolic forms relative to the Hilbert groups. The exposition is in the adele language of Jacquet and Langlands. We construct $p$-adic $L$-functions associated with representations of $GL(2)$ over completely real fields, of discrete type at infinity.
@article{RM_1976_31_1_a1,
     author = {Yu. I. Manin},
     title = {Non-Archimedean integration and {Jacquet--Langlands} $p$-adic $L$-functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {5--57},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {1976},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1976_31_1_a1/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - Non-Archimedean integration and Jacquet--Langlands $p$-adic $L$-functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1976
SP  - 5
EP  - 57
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1976_31_1_a1/
LA  - en
ID  - RM_1976_31_1_a1
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T Non-Archimedean integration and Jacquet--Langlands $p$-adic $L$-functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1976
%P 5-57
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1976_31_1_a1/
%G en
%F RM_1976_31_1_a1
Yu. I. Manin. Non-Archimedean integration and Jacquet--Langlands $p$-adic $L$-functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 1, pp. 5-57. http://geodesic.mathdoc.fr/item/RM_1976_31_1_a1/