Non-Archimedean integration and Jacquet--Langlands $p$-adic $L$-functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 1, pp. 5-57
Voir la notice de l'article provenant de la source Math-Net.Ru
In 1964 Kubota and Leopoldt constructed a $p$-adic analogue of the Riemann zeta-function. Since then the class of $L$-functions with $p$-adic variants has continually been enlarged. At the beginning of the article we survey work in this direction, using the technique of the $p$-adic Mellin transform. Then we show how to apply it to the construction of non-Archimedean measures and integrals corresponding to parabolic forms relative to the Hilbert groups. The exposition is in the adele language of Jacquet and Langlands. We construct $p$-adic $L$-functions associated with representations of $GL(2)$ over completely real fields, of discrete type at infinity.
@article{RM_1976_31_1_a1,
author = {Yu. I. Manin},
title = {Non-Archimedean integration and {Jacquet--Langlands} $p$-adic $L$-functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {5--57},
publisher = {mathdoc},
volume = {31},
number = {1},
year = {1976},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1976_31_1_a1/}
}
TY - JOUR AU - Yu. I. Manin TI - Non-Archimedean integration and Jacquet--Langlands $p$-adic $L$-functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1976 SP - 5 EP - 57 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1976_31_1_a1/ LA - en ID - RM_1976_31_1_a1 ER -
Yu. I. Manin. Non-Archimedean integration and Jacquet--Langlands $p$-adic $L$-functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 1, pp. 5-57. http://geodesic.mathdoc.fr/item/RM_1976_31_1_a1/