The existence of resolving distributions of dimension $n-r-1$ and $n-r-2$ of a Pfaffian system of rank $r$ in $R^n$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1975_30_6_a23,
     author = {I. B. Tabov},
     title = {The existence of resolving distributions of dimension $n-r-1$ and $n-r-2$ of {a~Pfaffian} system of rank~$r$ in~$R^n$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1975},
     volume = {30},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1975_30_6_a23/}
}
TY  - JOUR
AU  - I. B. Tabov
TI  - The existence of resolving distributions of dimension $n-r-1$ and $n-r-2$ of a Pfaffian system of rank $r$ in $R^n$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1975
VL  - 30
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1975_30_6_a23/
LA  - ru
ID  - RM_1975_30_6_a23
ER  - 
%0 Journal Article
%A I. B. Tabov
%T The existence of resolving distributions of dimension $n-r-1$ and $n-r-2$ of a Pfaffian system of rank $r$ in $R^n$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1975
%V 30
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1975_30_6_a23/
%G ru
%F RM_1975_30_6_a23
I. B. Tabov. The existence of resolving distributions of dimension $n-r-1$ and $n-r-2$ of a Pfaffian system of rank $r$ in $R^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 6. http://geodesic.mathdoc.fr/item/RM_1975_30_6_a23/

[1] P. K. Rashevskii, Geometricheskaya teoriya differentsialnykh uravnenii s chastnymi proizvodnymi, Gostekhizdat, M.-L., 1947

[2] R. Bishop, R. Kritenden, Geometriya mnogoobrazii, Mir, M., 1967 | MR | Zbl

[3] I. B. Tabov, “O suschestvovanii razreshayuschikh raspredelenii razmernosti $n-r-1$ ne vpolne integriruemoi sistemy Pfaffa ranga $r$ v $R^n$”, UMN, 29:4(178) (1974), 183–184 | MR | Zbl