The existence of resolving distributions of dimension $n-r-1$ and $n-r-2$ of a Pfaffian system of rank $r$ in $R^n$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 6
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1975_30_6_a23,
author = {I. B. Tabov},
title = {The existence of resolving distributions of dimension $n-r-1$ and $n-r-2$ of {a~Pfaffian} system of rank~$r$ in~$R^n$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1975},
volume = {30},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1975_30_6_a23/}
}
TY - JOUR AU - I. B. Tabov TI - The existence of resolving distributions of dimension $n-r-1$ and $n-r-2$ of a Pfaffian system of rank $r$ in $R^n$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1975 VL - 30 IS - 6 UR - http://geodesic.mathdoc.fr/item/RM_1975_30_6_a23/ LA - ru ID - RM_1975_30_6_a23 ER -
%0 Journal Article %A I. B. Tabov %T The existence of resolving distributions of dimension $n-r-1$ and $n-r-2$ of a Pfaffian system of rank $r$ in $R^n$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1975 %V 30 %N 6 %U http://geodesic.mathdoc.fr/item/RM_1975_30_6_a23/ %G ru %F RM_1975_30_6_a23
I. B. Tabov. The existence of resolving distributions of dimension $n-r-1$ and $n-r-2$ of a Pfaffian system of rank $r$ in $R^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 6. http://geodesic.mathdoc.fr/item/RM_1975_30_6_a23/
[1] P. K. Rashevskii, Geometricheskaya teoriya differentsialnykh uravnenii s chastnymi proizvodnymi, Gostekhizdat, M.-L., 1947
[2] R. Bishop, R. Kritenden, Geometriya mnogoobrazii, Mir, M., 1967 | MR | Zbl
[3] I. B. Tabov, “O suschestvovanii razreshayuschikh raspredelenii razmernosti $n-r-1$ ne vpolne integriruemoi sistemy Pfaffa ranga $r$ v $R^n$”, UMN, 29:4(178) (1974), 183–184 | MR | Zbl