The matrix method and quasi-power bases in the space of analytic functions in a~disc
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 6, pp. 107-154

Voir la notice de l'article provenant de la source Math-Net.Ru

We denote by $A_R(0$ the space of all single-valued functions analytic in the disc $|z|$, with the topology of compact convergence. In the paper we present a survey of the results obtained during the last twenty years from investigations (using the matrix description of continuous linear operators) of conditions for systems of analytic functions to be quasi-power bases in $A_R$. We treat applications to many classical systems of functions and to systems formed from solutions of certain differential equations.
@article{RM_1975_30_6_a2,
     author = {I. I. Ibragimov and N. I. Nagnibida},
     title = {The matrix method and quasi-power bases in the space of analytic functions in a~disc},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {107--154},
     publisher = {mathdoc},
     volume = {30},
     number = {6},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1975_30_6_a2/}
}
TY  - JOUR
AU  - I. I. Ibragimov
AU  - N. I. Nagnibida
TI  - The matrix method and quasi-power bases in the space of analytic functions in a~disc
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1975
SP  - 107
EP  - 154
VL  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1975_30_6_a2/
LA  - en
ID  - RM_1975_30_6_a2
ER  - 
%0 Journal Article
%A I. I. Ibragimov
%A N. I. Nagnibida
%T The matrix method and quasi-power bases in the space of analytic functions in a~disc
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1975
%P 107-154
%V 30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1975_30_6_a2/
%G en
%F RM_1975_30_6_a2
I. I. Ibragimov; N. I. Nagnibida. The matrix method and quasi-power bases in the space of analytic functions in a~disc. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 6, pp. 107-154. http://geodesic.mathdoc.fr/item/RM_1975_30_6_a2/