Representations of the group of diffeomorphisms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 6, pp. 1-50
Voir la notice de l'article provenant de la source Math-Net.Ru
This article contains a survey of results on representations of the diffeomorphism group of a noncompact manifold $X$ associated with the space $\Gamma_x$ of configurations (that is, of locally finite subsets) in $X$. These representations are constructed from a quasi-invariant measure $\mu$ on $\Gamma_x$. In particular, necessary and sufficient conditions are established for the representations to be irreducible. In the case of the Poisson measure $\mu$ a description is given of the corresponding representation ring.
@article{RM_1975_30_6_a0,
author = {A. M. Vershik and I. M. Gel'fand and M. I. Graev},
title = {Representations of the group of diffeomorphisms},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {1--50},
publisher = {mathdoc},
volume = {30},
number = {6},
year = {1975},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_1975_30_6_a0/}
}
TY - JOUR AU - A. M. Vershik AU - I. M. Gel'fand AU - M. I. Graev TI - Representations of the group of diffeomorphisms JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1975 SP - 1 EP - 50 VL - 30 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RM_1975_30_6_a0/ LA - en ID - RM_1975_30_6_a0 ER -
A. M. Vershik; I. M. Gel'fand; M. I. Graev. Representations of the group of diffeomorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 6, pp. 1-50. http://geodesic.mathdoc.fr/item/RM_1975_30_6_a0/