Choquet boundaries in $K$-spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 4, pp. 115-155

Voir la notice de l'article provenant de la source Math-Net.Ru

The article contains an account of the fundamental methods of Choquet theory. Decompositions, maximal operators, projectors, Choquet and Shilov boundaries are essential research tools in the fields of convex analysis, potential theory, approximation theory, geometry of convex surfaces, and so on. The account is given in terms of the theory of Kantorovich spaces and the framework of a new and very general approach, which covers the majority of known constructions of the theory of integral representations.
@article{RM_1975_30_4_a2,
     author = {S. S. Kutateladze},
     title = {Choquet boundaries in $K$-spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {115--155},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1975_30_4_a2/}
}
TY  - JOUR
AU  - S. S. Kutateladze
TI  - Choquet boundaries in $K$-spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1975
SP  - 115
EP  - 155
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1975_30_4_a2/
LA  - en
ID  - RM_1975_30_4_a2
ER  - 
%0 Journal Article
%A S. S. Kutateladze
%T Choquet boundaries in $K$-spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1975
%P 115-155
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1975_30_4_a2/
%G en
%F RM_1975_30_4_a2
S. S. Kutateladze. Choquet boundaries in $K$-spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 4, pp. 115-155. http://geodesic.mathdoc.fr/item/RM_1975_30_4_a2/