The method of tents in the theory of extremal problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 3, pp. 1-54

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of tents is a unified method of solving various kinds of extremal problems. It is a development of the method of Milyutin and Dubovitskii, but it removes their restrictive assumption that certain cones must be solid. The present exposition is limited to the finite-dimensional case. As applications, we give detailed proofs of very general necessary conditions for various types of extremal problems, such as the problems of mathematical programming, of optimal control (in particular, we include a proof of Pontryagin's maximum principle), and of minimax problems.
@article{RM_1975_30_3_a0,
     author = {V. G. Boltyanskii},
     title = {The method of tents in the theory of extremal problems},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {1--54},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1975_30_3_a0/}
}
TY  - JOUR
AU  - V. G. Boltyanskii
TI  - The method of tents in the theory of extremal problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1975
SP  - 1
EP  - 54
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1975_30_3_a0/
LA  - en
ID  - RM_1975_30_3_a0
ER  - 
%0 Journal Article
%A V. G. Boltyanskii
%T The method of tents in the theory of extremal problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1975
%P 1-54
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1975_30_3_a0/
%G en
%F RM_1975_30_3_a0
V. G. Boltyanskii. The method of tents in the theory of extremal problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 3, pp. 1-54. http://geodesic.mathdoc.fr/item/RM_1975_30_3_a0/