Subelliptic operators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 2, pp. 59-118

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of pseudodifferential operators that occupies an intermediate position between the classes of elliptic and hyperbolic operators. We give an adequate description of subelliptic scalar operators in terms of the highest part of the symbol. Our results can be used in the study of boundary value problems for elliptic differential equations.
@article{RM_1975_30_2_a1,
     author = {Yu. V. Egorov},
     title = {Subelliptic operators},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {59--118},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1975_30_2_a1/}
}
TY  - JOUR
AU  - Yu. V. Egorov
TI  - Subelliptic operators
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1975
SP  - 59
EP  - 118
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_1975_30_2_a1/
LA  - en
ID  - RM_1975_30_2_a1
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%T Subelliptic operators
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1975
%P 59-118
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_1975_30_2_a1/
%G en
%F RM_1975_30_2_a1
Yu. V. Egorov. Subelliptic operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 2, pp. 59-118. http://geodesic.mathdoc.fr/item/RM_1975_30_2_a1/